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Non-Relativistic QM (Revision)

* For particle physics need a relativistic formulation of quantum mechanics.
But first take a few moments to review the non-relativistic formulation QM

*Take as the starting point non-relativistic energy:
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 In QM we identify the energy and momentum operators:
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 But how we do interpret the SE and associated wave function ?
The best way is to see what it conserves. What are the conserved currents and
densities?
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Now using Eq. (1)- Eq.(2)
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p = ™) satisfies a continuity equation
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conserved current
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Now, integrating over a volume V: / i dV = — V- -JdV
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and using Gauss’ Theorem pdV —— / J.dA
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Any change in the total p in the volume must come about
through a current J through the surface of the volume.

Volume V enclosed
by Area A



p = 1™ isaconserved density and we interpret it as the probability density
for finding a particle at a particular position.

*For a plane wave Y = Ne

* The number of particles per unit volume is |N|2

* For |N|2»articles per unit volume moving at some velocity, have

passing through a unit area per unit time (particle flux). Therefore is
a vector in the particle’ s direction with magnitude equal to the flux.

% The SE is first order in the time derivatives and second
order in spatial derivatives — and is manifestly not

Lorentz invariant.



* The Schrodinger Equation only describes particles in the non
relativistic limit. To describe the particle at particle colliders we need
to incorporate special theory of relativity

1 A Quick Review of Special Theory of Relativity

We construct a position four-vector as g2 .t
oH = (29,21, 22, 23) = (et, ©) (p=1{0,1,2,3})

An observer in a frame S’ will instead observe a four-vector «'# = A", z¥ where A
denotes a Lorentz transformation.

e.g. under a Lorentz boost by v in the positive a direction:
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B The quantity ThT 18 invariant under a Lorentz transformation
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[ note the definition of ]

a covector Ty = Guvt”
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Here guw = 00 -1 0 is the metric tensor of Minkowski space-time.
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B This invariance implies that the Lorentz transformation is orthogonal:
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dxt
B Aparticle’s four-momentum is defined by p = m 3
T

T is proper time, the time in the particle’s own rest frame.

It is related to an observer’'s timevia { = 7T

Its four-momentum’s time component is the particle’s energy, while the space
components are its three-momentum

pH = (%ﬁ)

and its length is an invariant, its mass? (times ¢?):
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B Finally, | define the derivative
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This is a covector (index down).

You will sometimes use the vector expression
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& Klein-Gordon Equation
» A relativistic wave equation for bosons

» Feynman-stuckelberg Interpretation

» Normalization of KG Solutions



d Klein-Gordon Equation

Oskar Klein

€ Klein Gordon (KG) Equation was the first relativistic (Lorentz
covariant) quantum mechanical model.

€ To the best of my knowledge, KGE is not being used now a days in
either physics or quantum chemistry except for some work with pions.

€ It nonetheless serve as an excellent pedagogical tool for the
introduction of concepts.

& Disparaged shortly after introduction, it was resurrected and
vindicated a decade later when Pauli and his postdoc Victor

Weisskopf showed that it is really an important equation | relativistic
quantum field theory.



The invariant of four vector-momentum’s length provides us a relation
between energy, momentum and mass
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Replacing energy and momentum with £ —ifi—, p — —-iiV
gives the Klien-Gordon equation ot
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** | have put V=0 for simplicity (free particle)
—~ L (Et=p )
 The plane wave solution for above equation is ¢(¢,x)= Ne * g

Normalization

* This is relativistic wave equation for spin zero particles, which is
conventionally denoted by ¢



® s the Klein-Gordon equation the same in all reference frames?

Under a Lorentz transformation the Klein-Gordon operator is invariant, so:

(()? ()dr - m ) ¢'(2') = (()u 5, m2> ¢'(Az) =0

« Since|¢lis invariant, then |¢|* does not change with a Lorentz

transformation.
* This sound good — the probability does not change with reference

frame



$» Unfortunately, the probability should change with reference frame!
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Remember that |¢|< is a probability density: 9@
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Length contraction changes volumes V' = =" &
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The probability P = pV so for P to be invariant we need p’ = ~p

Probability and current densities

We know that K-G equation is
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Complex conjugate of K-G Equation K-G equation is
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Multiply equation (1) by ¢" from left and equation (2) by ¢ from right,
we get
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= Exercise: Derive the continuity equation above, in a non-covariant notation
(just as we did for the Schrodinger equation). Now derive it using a covariant
notation.

_ ) ——( t-p.x)
Consider a plane wave solution: ¢(, x)=Ne " Of K-G Equation
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* Not surprisingly, the KG equation has negative energy solutions
* Historically —ve energy solutions were viewed as problematic but for KG,
there is also a problem with probability density

o= gy - o|N[ e
2imc’

« So these —ve energy states have negative probability distributions
« We can not just ignore these solutions since they will crop up in any
Fourier decomposition



This is why Schrodinger abandoned this equation and developed the non-
relativistic Schrodinger equation instead — he (implicitly) took the positive sign
of the square root so that he could ignore the negative energy solutions.

Feynman-stuckelberg Interpretation

» Quantum field theory tells us that positive energy states must propagate
forwards in time in order to preserve causality

» Feynman an Stuckelburge suggested that —ve energy states propagate
backwards in time

Our negative energy solution (E<0) plane wave solution are
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Negative sign moved to time Remember .
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< Particles flowing backwards in time are then reinterpreted as anti-
particles flowing in the forward direction

If field is charged, we may interpret 7/ as a charge density, instead of a
probability density

i = —ie [¢*(9"¢) — (9M¢*)¢]

Now p =]°, so for a particle of energy E: 0 = —2¢|N|2E
while for an anti-particle of energy E: j0 = 42¢|N|?E = -2¢|N|*(-E)

which is the same as the charge density for an electron of energy -E



In reality, we only ever see the final state particles, so we must include these anti-particles

anyway.
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. negative energy state flowing
time backwards in time

positive energy state _

flowing forwards in time positive energy anti-particle state
flowing forwards in time

Quantum mechanics does not adequately handle the creation of particle —anti-particle
pairs out of the vacuum. For that you will need Quantum Field Theory.



€ Normalization of KG Solutions

The particle (or charge) density allows us to normalize the KG
solutions in a box

pi= 2\N\2E so in a box of volume V the number of particles is:

/V odV = A/2|N|2Edv — 2|N|2EV

If we normalize to 2E particles per unit volume, then N=1

Notice that this is a covariant choice. Since the number of particles in a box should be
Independent of reference frame, but the volume of the box changes with a Lorentz boost,
the density must also change with a boost. In fact, the density is the time component of a

four-vector 7.



