
C Structure

Why use structure?

In C, there are cases where we need to store multiple attributes of an entity. It is not

necessary that an entity has all the information of one type only. It can have different

attributes of different data types. For example, an entity Student may have its name

(string), roll number (int), marks (float). To store such type of information regarding an

entity student, we have the following approaches:

o Construct individual arrays for storing names, roll numbers, and marks.

o Use a special data structure to store the collection of different data types.

Let's look at the first approach in detail.

1. #include<stdio.h>

2. void main ()

3. {

4. char names[2][10],dummy; // 2-

dimensioanal character array names is used to store the names of the students

5. int roll_numbers[2],i;

6. float marks[2];

7. for (i=0;i<3;i++)

8. {

9.

10. printf("Enter the name, roll number, and marks of the student %d",i+1);

11. scanf("%s %d %f",&names[i],&roll_numbers[i],&marks[i]);

12. scanf("%c",&dummy); // enter will be stored into dummy character at each iteration

13. }

14. printf("Printing the Student details ...\n");

15. for (i=0;i<3;i++)

16. {

17. printf("%s %d %f\n",names[i],roll_numbers[i],marks[i]);

18. }

19. }

Output

Enter the name, roll number, and marks of the student 1Arun 90 91

Enter the name, roll number, and marks of the student 2Varun 91 56

Enter the name, roll number, and marks of the student 3Sham 89 69

Printing the Student details...

Arun 90 91.000000

Varun 91 56.000000

Sham 89 69.000000

The above program may fulfill our requirement of storing the information of an entity

student. However, the program is very complex, and the complexity increase with the

amount of the input. The elements of each of the array are stored contiguously, but all

the arrays may not be stored contiguously in the memory. C provides you with an

additional and simpler approach where you can use a special data structure, i.e.,

structure, in which, you can group all the information of different data type regarding an

entity.

What is Structure

Structure in c is a user-defined data type that enables us to store the collection of

different data types. Each element of a structure is called a member. Structures ca;

simulate the use of classes and templates as it can store various information

The ,struct keyword is used to define the structure. Let's see the syntax to define the

structure in c.

1. struct structure_name

2. {

3. data_type member1;

4. data_type member2;

5. .

6. .

7. data_type memeberN;

8. };

Let's see the example to define a structure for an entity employee in c.

1. struct employee

2. { int id;

3. char name[20];

4. float salary;

5. };

The following image shows the memory allocation of the structure employee that is

defined in the above example.

Here, struct is the keyword; employee is the name of the structure; id, name,

and salary are the members or fields of the structure. Let's understand it by the diagram

given below:

Declaring structure variable

We can declare a variable for the structure so that we can access the member of the

structure easily. There are two ways to declare structure variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining the structure.

1st way:

Let's see the example to declare the structure variable by struct keyword. It should be

declared within the main function.

1. struct employee

2. { int id;

3. char name[50];

4. float salary;

5. };

Now write given code inside the main() function.

1. struct employee e1, e2;

The variables e1 and e2 can be used to access the values stored in the structure. Here, e1 and e2

can be treated in the same way as the objects in C++ and Java.

2nd way:

Let's see another way to declare variable at the time of defining the structure.

1. struct employee

2. { int id;

3. char name[50];

4. float salary;

5. }e1,e2;

Which approach is good

If number of variables are not fixed, use the 1st approach. It provides you the flexibility

to declare the structure variable many times.

If no. of variables are fixed, use 2nd approach. It saves your code to declare a variable in

main() function.

Accessing members of the structure

There are two ways to access structure members:

1. By . (member or dot operator)

2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by. (member) operator.

1. p1.id

C Structure example

Let's see a simple example of structure in C language.

1. #include<stdio.h>

2. #include <string.h>

3. struct employee

https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial

4. { int id;

5. char name[50];

6. }e1; //declaring e1 variable for structure

7. int main()

8. {

9. //store first employee information

10. e1.id=101;

11. strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

12. //printing first employee information

13. printf("employee 1 id : %d\n", e1.id);

14. printf("employee 1 name : %s\n", e1.name);

15. return 0;

16. }

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

Let's see another example of the structure in C language to store many employees

information.

1. #include<stdio.h>

2. #include <string.h>

3. struct employee

4. { int id;

5. char name[50];

6. float salary;

7. }e1,e2; //declaring e1 and e2 variables for structure

8. int main()

9. {

10. //store first employee information

11. e1.id=101;

12. strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

13. e1.salary=56000;

14.

https://www.javatpoint.com/c-programming-language-tutorial

15. //store second employee information

16. e2.id=102;

17. strcpy(e2.name, "James Bond");

18. e2.salary=126000;

19.

20. //printing first employee information

21. printf("employee 1 id : %d\n", e1.id);

22. printf("employee 1 name : %s\n", e1.name);

23. printf("employee 1 salary : %f\n", e1.salary);

24.

25. //printing second employee information

26. printf("employee 2 id : %d\n", e2.id);

27. printf("employee 2 name : %s\n", e2.name);

28. printf("employee 2 salary : %f\n", e2.salary);

29. return 0;

30. }

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

employee 1 salary : 56000.000000

employee 2 id : 102

employee 2 name : James Bond

employee 2 salary : 126000.000000

typedef in C

The typedef is a keyword used in C programming to provide some meaningful names

to the already existing variable in the C program. It behaves similarly as we define the

alias for the commands. In short, we can say that this keyword is used to redefine the

name of an already existing variable.

Syntax of typedef

1. typedef <existing_name> <alias_name>

In the above syntax, 'existing_name' is the name of an already existing variable while

'alias name' is another name given to the existing variable.

For example, suppose we want to create a variable of type unsigned int, then it

becomes a tedious task if we want to declare multiple variables of this type. To

overcome the problem, we use a typedef keyword.

1. typedef unsigned int unit;

In the above statements, we have declared the unit variable of type unsigned int by

using a typedef keyword.

Now, we can create the variables of type unsigned int by writing the following

statement:

1. unit a, b;

instead of writing:

1. unsigned int a, b;

Till now, we have observed that the typedef keyword provides a nice shortcut by

providing an alternative name for an already existing variable. This keyword is useful

when we are dealing with the long data type especially, structure declarations.

Let's understand through a simple example.

https://www.javatpoint.com/c-programs

1. #include <stdio.h>

2. int main()

3. {

4. typedef unsigned int unit;

5. unit i,j;

6. i=10;

7. j=20;

8. printf("Value of i is :%d",i);

9. printf("\nValue of j is :%d",j);

10. return 0;

11. }

Output

Value of i is :10

Value of j is :20

Using typedef with structures

Consider the below structure declaration:

1. struct student

2. {

3. char name[20];

4. int age;

5. };

6. struct student s1;

In the above structure declaration, we have created the variable of student type by

writing the following statement:

1. struct student s1;

The above statement shows the creation of a variable, i.e., s1, but the statement is quite

big. To avoid such a big statement, we use the typedef keyword to create the variable

of type student.

1. struct student

2. {

3. char name[20];

4. int age;

5. };

6. typedef struct student stud;

7. stud s1, s2;

In the above statement, we have declared the variable stud of type struct student. Now,

we can use the stud variable in a program to create the variables of type struct

student.

The above typedef can be written as:

1. typedef struct student

2. {

3. char name[20];

4. int age;

5. } stud;

6. stud s1,s2;

From the above declarations, we conclude that typedef keyword reduces the length of

the code and complexity of data types. It also helps in understanding the program.

Let's see another example where we typedef the structure declaration.

1. #include <stdio.h>

2. typedef struct student

3. {

4. char name[20];

5. int age;

6. }stud;

7. int main()

8. {

9. stud s1;

10. printf("Enter the details of student s1: ");

11. printf("\nEnter the name of the student:");

12. scanf("%s",&s1.name);

13. printf("\nEnter the age of student:");

14. scanf("%d",&s1.age);

15. printf("\n Name of the student is : %s", s1.name);

16. printf("\n Age of the student is : %d", s1.age);

17. return 0;

18. }

Output

Enter the details of student s1:

Enter the name of the student: Peter

Enter the age of student: 28

Name of the student is : Peter

Age of the student is : 28

Using typedef with pointers

We can also provide another name or alias name to the pointer variables with the help

of the typedef.

For example, we normally declare a pointer, as shown below:

1. int* ptr;

We can rename the above pointer variable as given below:

1. typedef int* ptr;

In the above statement, we have declared the variable of type int*. Now, we can create

the variable of type int* by simply using the 'ptr' variable as shown in the below

statement:

1. ptr p1, p2 ;

In the above statement, p1 and p2 are the variables of type 'ptr'.

C Array of Structures

Why use an array of structures?

Consider a case, where we need to store the data of 5 students. We can store it by using

the structure as given below.

1. #include<stdio.h>

2. struct student

3. {

4. char name[20];

5. int id;

6. float marks;

7. };

8. void main()

9. {

10. struct student s1,s2,s3;

11. int dummy;

12. printf("Enter the name, id, and marks of student 1 ");

13. scanf("%s %d %f",s1.name,&s1.id,&s1.marks);

14. scanf("%c",&dummy);

15. printf("Enter the name, id, and marks of student 2 ");

16. scanf("%s %d %f",s2.name,&s2.id,&s2.marks);

17. scanf("%c",&dummy);

18. printf("Enter the name, id, and marks of student 3 ");

19. scanf("%s %d %f",s3.name,&s3.id,&s3.marks);

20. scanf("%c",&dummy);

21. printf("Printing the details....\n");

22. printf("%s %d %f\n",s1.name,s1.id,s1.marks);

23. printf("%s %d %f\n",s2.name,s2.id,s2.marks);

24. printf("%s %d %f\n",s3.name,s3.id,s3.marks);

25. }

Output

Enter the name, id, and marks of student 1 James 90 90

Enter the name, id, and marks of student 2 Adoms 90 90

Enter the name, id, and marks of student 3 Nick 90 90

Printing the details....

James 90 90.000000

Adoms 90 90.000000

Nick 90 90.000000

In the above program, we have stored data of 3 students in the structure. However, the

complexity of the program will be increased if there are 20 students. In that case, we will

have to declare 20 different structure variables and store them one by one. This will

always be tough since we will have to declare a variable every time we add a student.

Remembering the name of all the variables is also a very tricky task. However, c enables

us to declare an array of structures by using which, we can avoid declaring the different

structure variables; instead we can make a collection containing all the structures that

store the information of different entities.

Array of Structures in C

An array of structres in C can be defined as the collection of multiple structures variables

where each variable contains information about different entities. The array of structures

in C are used to store information about multiple entities of different data types. The

array of structures is also known as the collection of structures.

Let's see an example of an array of structures that stores information of 5 students and

prints it.

1. #include<stdio.h>

2. #include <string.h>

3. struct student{

4. int rollno;

5. char name[10];

6. };

7. int main(){

8. int i;

9. struct student st[5];

10. printf("Enter Records of 5 students");

11. for(i=0;i<5;i++){

12. printf("\nEnter Rollno:");

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/structure-in-c
https://www.javatpoint.com/structure-in-c

13. scanf("%d",&st[i].rollno);

14. printf("\nEnter Name:");

15. scanf("%s",&st[i].name);

16. }

17. printf("\nStudent Information List:");

18. for(i=0;i<5;i++){

19. printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

20. }

21. return 0;

22. }

Output:

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

Nested Structure in C

C provides us the feature of nesting one structure within another structure by using

which, complex data types are created. For example, we may need to store the address

of an entity employee in a structure. The attribute address may also have the subparts

as street number, city, state, and pin code. Hence, to store the address of the employee,

we need to store the address of the employee into a separate structure and nest the

structure address into the structure employee. Consider the following program.

1. #include<stdio.h>

2. struct address

3. {

4. char city[20];

5. int pin;

6. char phone[14];

7. };

8. struct employee

9. {

10. char name[20];

11. struct address add;

12. };

13. void main ()

14. {

15. struct employee emp;

16. printf("Enter employee information?\n");

17. scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);

18. printf("Printing the employee information....\n");

19. printf("name: %s\nCity: %s\nPincode: %d\nPhone: %s",emp.name,emp.add.city,emp.a

dd.pin,emp.add.phone);

20. }

Output

Enter employee information?

Arun

Delhi

110001

1234567890

Printing the employee information....

name: Arun

City: Delhi

Pincode: 110001

Phone: 1234567890

The structure can be nested in the following ways.

1. By separate structure

2. By Embedded structure

1) Separate structure

Here, we create two structures, but the dependent structure should be used inside the

main structure as a member. Consider the following example.

1. struct Date

2. {

3. int dd;

4. int mm;

5. int yyyy;

6. };

7. struct Employee

8. {

9. int id;

10. char name[20];

11. struct Date doj;

12. }emp1;

As you can see, doj (date of joining) is the variable of type Date. Here doj is used as a

member in Employee structure. In this way, we can use Date structure in many

structures.

2) Embedded structure

The embedded structure enables us to declare the structure inside the structure. Hence,

it requires less line of codes but it can not be used in multiple data structures. Consider

the following example.

1. struct Employee

2. {

3. int id;

4. char name[20];

5. struct Date

6. {

7. int dd;

8. int mm;

9. int yyyy;

10. }doj;

11. }emp1;

Accessing Nested Structure

We can access the member of the nested structure by

Outer_Structure.Nested_Structure.member as given below:

1. e1.doj.dd

2. e1.doj.mm

3. e1.doj.yyyy

C Nested Structure example

Let's see a simple example of the nested structure in C language.

1. #include <stdio.h>

2. #include <string.h>

3. struct Employee

4. {

5. int id;

6. char name[20];

7. struct Date

8. {

9. int dd;

10. int mm;

11. int yyyy;

12. }doj;

13. }e1;

14. int main()

15. {

16. //storing employee information

17. e1.id=101;

18. strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

19. e1.doj.dd=10;

20. e1.doj.mm=11;

21. e1.doj.yyyy=2014;

22.

23. //printing first employee information

24. printf("employee id : %d\n", e1.id);

25. printf("employee name : %s\n", e1.name);

26. printf("employee date of joining (dd/mm/yyyy) : %d/%d/%d\n", e1.doj.dd,e1.doj.mm,e

1.doj.yyyy);

27. return 0;

28. }

Output:

employee id : 101

employee name : Sonoo Jaiswal

employee date of joining (dd/mm/yyyy) : 10/11/2014

Passing structure to function

Just like other variables, a structure can also be passed to a function. We may pass the

structure members into the function or pass the structure variable at once. Consider the

following example to pass the structure variable employee to a function display() which

is used to display the details of an employee.

1. #include<stdio.h>

2. struct address

3. {

4. char city[20];

5. int pin;

6. char phone[14];

7. };

8. struct employee

9. {

10. char name[20];

11. struct address add;

12. };

13. void display(struct employee);

14. void main ()

15. {

16. struct employee emp;

17. printf("Enter employee information?\n");

18. scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);

19. display(emp);

20. }

21. void display(struct employee emp)

22. {

23. printf("Printing the details....\n");

24. printf("%s %s %d %s",emp.name,emp.add.city,emp.add.pin,emp.add.phone);

25. }

