
C Strings

The string can be defined as the one-dimensional array of characters terminated by a

null ('\0'). The character array or the string is used to manipulate text such as word or

sentences. Each character in the array occupies one byte of memory, and the last

character must always be 0. The termination character ('\0') is important in a string since

it is the only way to identify where the string ends. When we define a string as char

s[10], the character s[10] is implicitly initialized with the null in the memory.

There are two ways to declare a string in c language.

1. By char array

2. By string literal

Let's see the example of declaring string by char array in C language.

1. char ch[10]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

As we know, array index starts from 0, so it will be represented as in the figure given

below.

While declaring string, size is not mandatory. So we can write the above code as given

below:

1. char ch[]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

We can also define the string by the string literal in C language. For example:

1. char ch[]="javatpoint";

In such case, '\0' will be appended at the end of the string by the compiler.

Difference between char array and string literal

There are two main differences between char array and literal.

o We need to add the null character '\0' at the end of the array by ourself whereas,

it is appended internally by the compiler in the case of the character array.

o The string literal cannot be reassigned to another set of characters whereas, we

can reassign the characters of the array.

String Example in C

Let's see a simple example where a string is declared and being printed. The '%s' is used

as a format specifier for the string in c language.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){

4. char ch[11]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

5. char ch2[11]="javatpoint";

6.

7. printf("Char Array Value is: %s\n", ch);

8. printf("String Literal Value is: %s\n", ch2);

9. return 0;

10. }

Output

Char Array Value is: javatpoint

String Literal Value is: javatpoint

Traversing String

Traversing the string is one of the most important aspects in any of the programming

languages. We may need to manipulate a very large text which can be done by

traversing the text. Traversing string is somewhat different from the traversing an

integer array. We need to know the length of the array to traverse an integer array,

whereas we may use the null character in the case of string to identify the end the string

and terminate the loop.

Hence, there are two ways to traverse a string.

o By using the length of string

o By using the null character.

Let's discuss each one of them.

Using the length of string

Let's see an example of counting the number of vowels in a string.

1. #include<stdio.h>

2. void main ()

3. {

4. char s[11] = "javatpoint";

5. int i = 0;

6. int count = 0;

7. while(i<11)

8. {

9. if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

10. {

11. count ++;

12. }

13. i++;

14. }

15. printf("The number of vowels %d",count);

16. }

Output

The number of vowels 4

Using the null character

Let's see the same example of counting the number of vowels by using the null

character.

1. #include<stdio.h>

2. void main ()

3. {

4. char s[11] = "javatpoint";

5. int i = 0;

6. int count = 0;

7. while(s[i] != NULL)

8. {

9. if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

10. {

11. count ++;

12. }

13. i++;

14. }

15. printf("The number of vowels %d",count);

16. }

Output

The number of vowels 4

Accepting string as the input

Till now, we have used scanf to accept the input from the user. However, it can also be

used in the case of strings but with a different scenario. Consider the below code which

stores the string while space is encountered.

1. #include<stdio.h>

2. void main ()

3. {

4. char s[20];

5. printf("Enter the string?");

6. scanf("%s",s);

7. printf("You entered %s",s);

8. }

Output

Enter the string?javatpoint is the best

You entered javatpoint

It is clear from the output that, the above code will not work for space separated strings.

To make this code working for the space separated strings, the minor changed required

in the scanf function, i.e., instead of writing scanf("%s",s), we must write:

scanf("%[^\n]s",s) which instructs the compiler to store the string s while the new line

(\n) is encountered. Let's consider the following example to store the space-separated

strings.

1. #include<stdio.h>

2. void main ()

3. {

4. char s[20];

5. printf("Enter the string?");

6. scanf("%[^\n]s",s);

7. printf("You entered %s",s);

8. }

Output

Enter the string?javatpoint is the best

You entered javatpoint is the best

Here we must also notice that we do not need to use address of (&) operator in scanf to

store a string since string s is an array of characters and the name of the array, i.e., s

indicates the base address of the string (character array) therefore we need not use &

with it.

Some important points

However, there are the following points which must be noticed while entering the

strings by using scanf.

o The compiler doesn't perform bounds checking on the character array. Hence,

there can be a case where the length of the string can exceed the dimension of

the character array which may always overwrite some important data.

o Instead of using scanf, we may use gets() which is an inbuilt function defined in a

header file string.h. The gets() is capable of receiving only one string at a time.

Pointers with strings

We have used pointers with the array, functions, and primitive data types so far.

However, pointers can be used to point to the strings. There are various advantages of

using pointers to point strings. Let us consider the following example to access the

string via the pointer.

1. #include<stdio.h>

2. void main ()

3. {

4. char s[11] = "javatpoint";

5. char *p = s; // pointer p is pointing to string s.

6. printf("%s",p); // the string javatpoint is printed if we print p.

7. }

Output

javatpoint

As we know that string is an array of characters, the pointers can be used in the same

way they were used with arrays. In the above example, p is declared as a pointer to the

array of characters s. P affects similar to s since s is the base address of the string and

treated as a pointer internally. However, we can not change the content of s or copy the

content of s into another string directly. For this purpose, we need to use the pointers to

store the strings. In the following example, we have shown the use of pointers to copy

the content of a string into another.

1. #include<stdio.h>

2. void main ()

3. {

4. char *p = "hello javatpoint";

5. printf("String p: %s\n",p);

6. char *q;

7. printf("copying the content of p into q...\n");

8. q = p;

9. printf("String q: %s\n",q);

10. }

Output

String p: hello javatpoint

copying the content of p into q...

String q: hello javatpoint

Once a string is defined, it cannot be reassigned to another set of characters. However,

using pointers, we can assign the set of characters to the string. Consider the following

example.

1. #include<stdio.h>

2. void main ()

3. {

4. char *p = "hello javatpoint";

5. printf("Before assigning: %s\n",p);

6. p = "hello";

7. printf("After assigning: %s\n",p);

8. }

Output

Before assigning: hello javatpoint

After assigning: hello

