C Loops

The looping can be defined as repeating the same process multiple times until a specific
condition satisfies. There are three types of loops used in the C language. In this part of
the tutorial, we are going to learn all the aspects of C loops.

Why use loops in C language?

The looping simplifies the complex problems into the easy ones. It enables us to alter
the flow of the program so that instead of writing the same code again and again, we
can repeat the same code for a finite number of times. For example, if we need to print

the first 10 natural numbers then, instead of using the printf statement 10 times, we
can print inside a loop which runs up to 10 iterations.

Advantage of loops in C
1) It provides code reusability.
2) Using loops, we do not need to write the same code again and again.

3) Using loops, we can traverse over the elements of data structures (array or linked
lists).

Types of C Loops
There are three types of loops in C language that is given below:
1. do while

2. while

3. for
do-while loop in C

The do-while loop continues until a given condition satisfies. It is also called post tested
loop. Itis used when it is necessary to execute the loop at least once (mostly menu
driven programs).

The syntax of do-while loop in c language is given below:
1. do{

2. //code to be executed
3. }while(condition);


https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/do-while-loop-in-c

Flowchart and Example of do-while loop

while loop in C

The while loop in c is to be used in the scenario where we don't know the number of
iterations in advance. The block of statements is executed in the while loop until the
condition specified in the while loop is satisfied. It is also called a pre-tested loop.
The syntax of while loop in ¢ language is given below:

while(condition){

//code to be executed

b
Flowchart and Example of while loop
for loop in C

The for loop is used in the case where we need to execute some part of the code until
the given condition is satisfied. The for loop is also called as a per-tested loop. It is
better to use for loop if the number of iteration is known in advance.

The syntax of for loop in ¢ language is given below:

1. for(initialization;condition;incr/decr){

. //code to be executed

3.}

do while loop in C

The do while loop is a post tested loop. Using the do-while loop, we can repeat the
execution of several parts of the statements. The do-while loop is mainly used in the
case where we need to execute the loop at least once. The do-while loop is mostly used
in menu-driven programs where the termination condition depends upon the end user.

do while loop syntax

The syntax of the C language do-while loop is given below:

do{

//code to be executed


https://www.javatpoint.com/do-while-loop-in-c
https://www.javatpoint.com/while-loop-in-c

ywhile(condition);
Example 1

#include<stdio.h>
#include<stdlib.h>
void main ()
{
char c;
int choice,dummy;
do{
printf("\n1. Print Hello\n2. Print Javatpoint\n3
scanf("%d",&choice);
switch(choice)
{
case 1 :
printf("Hello");
break;
case 2:
printf("Javatpoint");
break;
case 3:
exit(0);
break;
default:
printf("please enter valid choice");
b
printf("do you want to enter more?");
scanf("%d",&dummy);
scanf("%c",&c);

Ywhile(c=="y");

. Exit\n");



Output

1. Print Hello

2. Print Javatpoint

3. Exit

1

Hello

do you want to enter more?

y

1. Print Hello

2. Print Javatpoint
3. Exit
2

Javatpoint
do you want to enter more?
n

Flowchart of do while loop




while loop in C

While loop is also known as a pre-tested loop. In general, a while loop allows a part of
the code to be executed multiple times depending upon a given boolean condition. It
can be viewed as a repeating if statement. The while loop is mostly used in the case
where the number of iterations is not known in advance.

Syntax of while loop in C language

The syntax of while loop in ¢ language is given below:

while(condition){

//code to be executed

¥

Flowchart of while loop in C

|

False

True J'
—




Example of the while loop in C language

Let's see the simple program of while loop that prints table of 1.

#include<stdio.h>
int main(){
inti=1;
while(i<=10){
printf("%d \n",i);
i++;

b

return 0;

b
Output

[

2
3
4
5
6
.
8
9
1

Program to print table for the given number using while
loop in C

#include<stdio.h>

int main(){
inti=1,number=0,b=9;
printf("Enter a number: ");
scanf("%d",&number);
while(i<=10){

printf("%d \n",(number*i));
i++;

b

return 0O;



Enter a number: 50
50
100
150
200
250
300
350
400
450
500
Enter a number: 100
100
200
300
400
500
600
700
800
900
1000

Properties of while loop

o A conditional expression is used to check the condition. The statements defined

inside the while loop will repeatedly execute until the given condition fails.

o The condition will be true if it returns 0. The condition will be false if it returns

any non-zero number.
o In while loop, the condition expression is compulsory.
o Running a while loop without a body is possible.
o We can have more than one conditional expression in while loop.

o If the loop body contains only one statement, then the braces are optional.



Example 1

#include<stdio.h>

void main ()

{
intj=1;
while(j+=2,j<=10)
{
printf("%d ",j);
b
printf("%d",j);
b
Output

357 911

Example 2

#include<stdio.h>

void main ()

{
while()

{
printf("hello Javatpoint");

by

Output
compile time error: while loop can't be empty

Example 3
#include<stdio.h>

void main ()

{
intx=10,y = 2;
while(x+y-1)



printf("%d %d",x--,y--);

¥

Output

Infinitive while loop in C

If the expression passed in while loop results in any non-zero value then the loop will
run the infinite number of times.

while(1){
//statement

by

forloop in C

The for loop in C language is used to iterate the statements or a part of the program
several times. It is frequently used to traverse the data structures like the array and
linked list.

Syntax of for loop in C

The syntax of for loop in c language is given below:

for(Expression 1; Expression 2; Expression 3){
//code to be executed

by



Flowchart of for loop in C

initialization

—
|

C for loop Examples

Let's see the simple program of for loop that prints table of 1.

#include<stdio.h>
int main(){

inti=0;
for(i=1;i<=10;i++){



printf("%d \n",i);
b

return 0O;

¥

Output

1
2
3
4
5
6
7
8
9
1

C Program: Print table for the given number using C for loop

#include<stdio.h>

int main(){

int i=1,number=0;
printf("Enter a number: ");
scanf("%d",&number);
for(i=1;i<=10;i++){
printf("%d \n",(number*i));
b

return 0;

b

Output

Enter a number:

Enter a number:



Properties of Expression 1

o The expression represents the initialization of the loop variable.
o We can initialize more than one variable in Expression 1.
o Expression 1 is optional.

o In C, we can not declare the variables in Expression 1. However, It can be an

exception in some compilers.

Example 1

#include <stdio.h>

int main()
{
int a,b,c;
for(a=0,b=12,c=23;a<2;a++)
{
printf("%d ",a+b+c);
b
b
Output

35 36

Example 2

#include <stdio.h>
int main()

{



inti=1;
for(;i<5;i++)

{
printf("%d ",i);

by

Output

12 3 4

Properties of Expression 2

o Expression 2 is a conditional expression. It checks for a specific condition to be

satisfied. If it is not, the loop is terminated.

o Expression 2 can have more than one condition. However, the loop will iterate
until the last condition becomes false. Other conditions will be treated as

statements.
o Expression 2 is optional.

o Expression 2 can perform the task of expression 1 and expression 3. That is, we
can initialize the variable as well as update the loop variable in expression 2

itself.

o We can pass zero or hon-zero value in expression 2. However, in C, any non-

zero value is true, and zero is false by default.

Example 1

#include <stdio.h>

int main()
{
inti;
for(i=0;i<=4;i++)
{
printf("%d ",i);
b



output

Example 2

#include <stdio.h>
int main()
{
inti,jk;
for(i=0,j=0,k=0;i<4,k<8,j<10;i++)
{
printf("%d %d %d\n",i,j,Kk);
j+=2;
k+=3;

Example 3

#include <stdio.h>
int main()
{
inti;
for(i=0;;i++)
{
printf("%d",i);

W O NO U kR WM



Output

Properties of Expression 3

o Expression 3 is used to update the loop variable.
o We can update more than one variable at the same time.

o Expression 3 is optional.

Example 1

#include<stdio.h>

. void main ()

{
inti=0,j=2;
for(i = 0;i<5;i++,j=j+2)
{
printf("%d O/Od\n"lilj);

Loop body

The braces {} are used to define the scope of the loop. However, if the loop contains
only one statement, then we don't need to use braces. A loop without a body is
possible. The braces work as a block separator, i.e., the value variable declared inside
for loop is valid only for that block and not outside. Consider the following example.

#include<stdio.h>

. void main ()

{
inti;
for(i=0;i<10;i++)



6. {
7. inti = 20;
8. printf("%d ",i);
9. T
10.}
Output

20 20 20 20 20 20 20 20 20 20

Infinitive for loop in C

To make a for loop infinite, we need not give any expression in the syntax. Instead of
that, we need to provide two semicolons to validate the syntax of the for loop. This will
work as an infinite for loop.

#include<stdio.h>
void main ()
{
for(;;)
{
printf("welcome to CCSU");

If you run this program, you will see above statement infinite times

Nested Loops in C

C supports nesting of loops in C. Nesting of loops is the feature in C that allows the
looping of statements inside another loop. Let's observe an example of nesting loops in
C.

Any number of loops can be defined inside another loop, i.e., there is no restriction for
defining any number of loops. The nesting level can be defined at n times. You can
define any type of loop inside another loop; for example, you can define 'while' loop
inside a 'for' loop.



Syntax of Nested loop

Outer_loop

{

Inner_loop

{

// inner loop statements.

// outer loop statements.

b

Outer_loop and Inner_loop are the valid loops that can be a 'for' loop, 'while' loop or
'do-while' loop.

Nested for loop

The nested for loop means any type of loop which is defined inside the 'for' loop.

for (initialization; condition; update)

{
for(initialization; condition; update)
{

// inner loop statements.

b

// outer loop statements.

b

Example of nested for loop

#include <stdio.h>

int main()

{
int n;// variable declaration
printf("Enter the value of n :");
// Displaying the n tables.
for(inti=1;i<=n;i++) // outer loop
{

for(int j=1;j<=10;j++) // inner loop



printf("%d\t",(i*j)); // printing the value.

¥
printf("\n");
¥

Explanation of the above code

o First, the 'i' variable is initialized to 1 and then program control passes to the
i<=n.

o The program control checks whether the condition 'i<=n'is true or not.

o If the condition is true, then the program control passes to the inner loop.

o The inner loop will get executed until the condition is true.

o After the execution of the inner loop, the control moves back to the update of

the outer loop, i.e., i++.

o After incrementing the value of the loop counter, the condition is checked again,
i.e., i<=n.

o If the condition is true, then the inner loop will be executed again.

o This process will continue until the condition of the outer loop is true.

Output:
v & input

. .Program finished with exit code 0O
'ress ENTER to exit 1:‘.—.::ns::ml-3.l

Nested while loop

The nested while loop means any type of loop which is defined inside the 'while' loop.



while(condition)

{
while(condition)
{

// inner loop statements.

¥

// outer loop statements.

b

Example of nested while loop

#include <stdio.h>
int main()
{
int rows; // variable declaration
int columns; // variable declaration
int k=1; // variable initialization
printf("Enter the number of rows :"); // input the number of rows.
scanf("%d",&rows);
printf("\nEnter the number of columns :"); // input the number of columns.
scanf("%d",&columns);
int a[rows][columns]; //2d array declaration
inti=1;
while(i<=rows) // outer loop
{
intj=1;
while(j<=columns) // inner loop
{
printf("%d\t",k); // printing the value of k.
k++; // increment counter
j++;
b
i++;
printf("\n");



¥

Explanation of the above code.

o We have created the 2d array, i.e., int a[rows][columns].
o The program initializes the 'i' variable by 1.

o Now, control moves to the while loop, and this loop checks whether the condition

is true, then the program control moves to the inner loop.

o After the execution of the inner loop, the control moves to the update of the
outer loop, i.e., i++.

o After incrementing the value of 'i', the condition (i<=rows) is checked.
o If the condition is true, the control then again moves to the inner loop.

o This process continues until the condition of the outer loop is true.

Output:

Enter the number of rows : 5

Enter the number of columns :3
3
&
9
12
15

. .Program finished with exit code 0

'ress ENTER to exit console.

Nested do..while loop

The nested do..while loop means any type of loop which is defined inside the 'do..while'
loop.

do

{
do



// inner loop statements.
}while(condition);
// outer loop statements.
Ywhile(condition);

Example of nested do..while loop.

#include <stdio.h>
int main()
{

/*printing the pattern

KK KK K K >k %
KK KK K K >k %
3K 3K K K K K % %
3K 3K K K K K % % */
inti=1;
do // outer loop
{
intj=1;
do // inner loop
{
printf("*");
J++;
Ywhile(j<=8);
printf("\n");
i++;
Ywhile(i<=4);
b

Output:



S N N B T B R

e ke i el e ke

S N N B T B R

e ke i el e ke

...Program finished with exit code 0O
FPres= ENTER to exit u:u::ns::rle.l]

Explanation of the above code.

o First, we initialize the outer loop counter variable, i.e., 'i' by 1.

o As we know that the do..while loop executes once without checking the
condition, so the inner loop is executed without checking the condition in the
outer loop.

o After the execution of the inner loop, the control moves to the update of the i++.

o When the loop counter value is incremented, the condition is checked. If the

condition in the outer loop is true, then the inner loop is executed.

o This process will continue until the condition in the outer loop is true.

Infinite Loop in C

What is infinite loop?

An infinite loop is a looping construct that does not terminate the loop and executes the
loop forever. It is also called an indefinite loop or an endless loop. It either produces
a continuous output or no output.

When to use an infinite loop

An infinite loop is useful for those applications that accept the user input and generate
the output continuously until the user exits from the application manually. In the
following situations, this type of loop can be used:

o All the operating systems run in an infinite loop as it does not exist after
performing some task. It comes out of an infinite loop only when the user

manually shuts down the system.



W RE

o All the servers run in an infinite loop as the server responds to all the client
requests. It comes out of an indefinite loop only when the administrator shuts

down the server manually.

o All the games also run in an infinite loop. The game will accept the user requests

until the user exits from the game.

We can create an infinite loop through various loop structures. The following are the
loop structures through which we will define the infinite loop:

o forloop

o while loop

o do-while loop

o go to statement

o C macros

For loop

Let's see the infinite 'for' loop. The following is the definition for the infinite for loop:

for(; ;)
{

// body of the for loop.
b

As we know that all the parts of the 'for' loop are optional, and in the above for loop,
we have not mentioned any condition; so, this loop will execute infinite times.

Let's understand through an example.

#include <stdio.h>

int main()

{
for(;;)
{
printf("Hello javatpoint");
b



return 0O;

¥

In the above code, we run the 'for' loop infinite times, so "Hello javatpoint" will be
displayed infinitely.

Output

v & input
atpointHello javatpointHello javatpointHelle javatpointHello javatpointHello javatpointHello
vatpointHello javatpointHello jawvatpointHello javatpointHello javatpeintHelle javatpointHello
avatpointHello javatpointHello javatpointHello javatpointHello javatpointHello jawvatpointHell
javatpointHello javatpointHello jawvatpointHelleo javatpointHello javatpointHelleo jawvatpointHel

javatpointHelle javatpointHelleo javatpointHello javatpointHello javatpeointHello javatpointHe
o javatpeointHelle javatpointHello jawvatpointHelle jawvatpointHello javatpointHello javatpointH
lo javatpointHello javatpointHelle jawvatpointHello javatpointHello javatpointHello jawvatpoint
llo javatpointHello jawvatpointHello javatpointHello jawvatpeointHelle jawvatpointHello javatpoin
ello javatpointHelleo javatpointHello javatpeintHelle javatpointHelle javatpointHelle jawvatpei
Hello javatpointHelleo javatpointHello javatpointHello javatpointHelle jawvatpointHello javatpo
tHello javatpeointHelle javatpointHello javatpointHello javatpointHelleo javatpointHello jawvatp
ntHelleo javatpointHello javatpointHello jawvatpointHello javatpointHello javatpointHello jawvat
intHello javatpointHelle javatpointHello javatpointHello javatpointHello javatpointHello jawva
ointHelleo javatpointHello javatpointHello javatpointHelleo javatpointHello javatpointHello jav

pointHelle javatpointHelleo jawvatpeintHelle javatpointHelle javatpointHelle jawvatpointHello ja

while loop

Now, we will see how to create an infinite loop using a while loop. The following is the
definition for the infinite while loop:

while(1)

{
// body of the loop..

by

In the above while loop, we put '1' inside the loop condition. As we know that any non-
zero integer represents the true condition while '0' represents the false condition.

Let's look at a simple example.

#include <stdio.h>

int main()



inti=0;
while(1)
{
i++;
printf("i is :%d",i);
b

return 0O;

b

In the above code, we have defined a while loop, which runs infinite times as it does
not contain any condition. The value of 'i' will be updated an infinite number of times.

Output

v < & input
i 1i i 679521 is :679531i is :67954i is :679551 is 9561 is 79571 is :67958i is :67959i is :679601i is :6796
:679641 is :679651i is :679661 is :679671i is :67968i is :67969i is :67970i1i is 971i is :679721 is
679741 is :6797 3 :679761i is :679771i is :67978i is :67979i is :679B80i is :67981i is :67 ii 79831 is :67984
679861 is 871 is :679881 is :67989i is :67990i is :67991i is :67992i is :67993i is :67994i is :679951 is
16799741 is :67998i is :67999%9i i=s :68000i i=s :68001i i=s :680 iz :68003i is :680044i i=s :68B005i is :680061i i= :6B007i
16800 is :680101i is :68011i is :6B8012i is :68013i is 014i is :68015i is :68016i is :6B017i is 80181 is :
0201 is 021i is :68022i1i is :680231 is :680241 is 80251 is :680261 is :680271 is :680 is :680291 is :680301
:680321i is :6B8033i is :68034i1i is :680351 i 680361 is :680371 is 381 is :680391 is B8040i is :68041i is :6
B8043i is :68044i is :68045i is :68046i1i is :68047i is :68048i is : i i B050i is :68051i is :68052i is :680531i
is :680551i is :68056i is :680581 is :6B8059i is :6B060i is :68061i is :6B806: is :680631i is :68064i is
1680671 is :68068i is 69i is :68B070i is :68071i is :680721i is :680731i is :6807441i is :680751 is :

0661 is
iz :68078i i= :68079i is :68080i i=s :6B081i is :68082i is :68083i is :6B0B44i is :68085i is :68086i i= :68087i is
891 is :68090i is :6B091i is :68092i is :680931i is :68094i is :68095i is :6809 is :68097i is :6B09B8i is :68099i is
681011 is :6810 is :681031 is : 3 1681051 is :681061 is :681071 is :681081 is 1091 is 110i is :68111
12i is :6B113i is :68114i is :68115i is :68] i is B8117i is :68118i is :68119i is :68120i is :68121i 1.

do..while loop

The do..while loop can also be used to create the infinite loop. The following is the
syntax to create the infinite do..while loop.

do
{
// body of the loop..
Ywhile(1);
The above do..while loop represents the infinite condition as we provide the '1' value

inside the loop condition. As we already know that non-zero integer represents the true
condition, so this loop will run infinite times.



goto statement

We can also use the goto statement to define the infinite loop.

infinite_loop;
2. // body statements.
3. goto infinite_loop;

In the above code, the goto statement transfers the control to the infinite loop.
Macros

We can also create the infinite loop with the help of a macro constant. Let's understand
through an example.

#include <stdio.h>
#define infinite for(;;)
int main()

{

infinite
{
printf("hello");

return O;

by

In the above code, we have defined a macro named as 'infinite', and its value is
'for(;;)'. Whenever the word 'infinite' comes in a program then it will be replaced with a
for(;;)".



Output
v & input

lohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohelloh:
hellochellochellochellohellochellochellohellohellohellohellohellohellohellohellchellochellohellochellohel
llchellchellchellchellchellchellchellohellohellchellochellchellochellochellohellohellohellchellchello
chellchellchellchellchellohellohellchellchellchellchellchellohellohellochellchellchellchellchellohe
ellohellohellchellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohell
lohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohelloh:
hellochellochellochellohellochellochellohellohellohellohellohellohellohellohellchellochellohellochellohel
llchellchellchellchellchellchellchellohellohellchellochellchellochellochellohellohellohellchellchello
chellchellchellchellchellohellohellchellchellchellchellchellohellohellochellchellchellchellchellohe
ellohellohellchellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohell
lohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohellohelloh:
hellochellochellochellohellochellochellohellohellohellohellohellohellohellohellchellochellohellochellohel
llohel1Dhel1Dhel1DhellDhellDhellahellohellohellohellohellohellu

Till now, we have seen various ways to define an infinite loop. However, we need some
approach to come out of the infinite loop. In order to come out of the infinite loop, we
can use the break statement.

Let's understand through an example.

#include <stdio.h>
int main()
{
char ch;
while(1)
{
ch=getchar();
if(ch=="n")
{
break;
b
printf("hello");
b

return O;

¥

In the above code, we have defined the while loop, which will execute an infinite
number of times until we press the key 'n'. We have added the 'if' statement inside the



while loop. The 'if' statement contains the break keyword, and the break keyword
brings control out of the loop.

Unintentional infinite loops

Sometimes the situation arises where unintentional infinite loops occur due to the bug
in the code. If we are the beginners, then it becomes very difficult to trace them. Below
are some measures to trace an unintentional infinite loop:

o We should examine the semicolons carefully. Sometimes we put the semicolon at

the wrong place, which leads to the infinite loop.

#include <stdio.h>
int main()

{

inti=1;
while(i<=10);

{

printf("%d", i);
i++;

b

return 0O;

by

In the above code, we put the semicolon after the condition of the while loop which
leads to the infinite loop. Due to this semicolon, the internal body of the while loop will
not execute.

o We should check the logical conditions carefully. Sometimes by mistake, we

place the assignment operator (=) instead of a relational operator (= =).

#include <stdio.h>
int main()

{

char ch="'n";
while(ch="y")

{

printf("hello");

b



return 0O;
b

In the above code, we use the assignment operator (ch='y') which leads to the
execution of loop infinite number of times.

o We use the wrong loop condition which causes the loop to be executed
indefinitely.

#include <stdio.h>
int main()
{
for(inti=1;i>=1;i++)
{ printf("hello");
b

return O;
b
The above code will execute the 'for loop' infinite number of times. As we put the

condition (i>=1), which will always be true for every condition, it means that "hello"
will be printed infinitely.

o We should be careful when we are using the break keyword in the nested loop

because it will terminate the execution of the nearest loop, not the entire loop.

#include <stdio.h>
int main()
{
while(1)
{
for(inti=1;i<=10;i++)
{
if(i%2==0)
{

break;



¥

return 0O;
b
In the above code, the while loop will be executed an infinite number of times as we

use the break keyword in an inner loop. This break keyword will bring the control out of
the inner loop, not from the outer loop.

o We should be very careful when we are using the floating-point value inside the

loop as we cannot underestimate the floating-point errors.

#include <stdio.h>
int main()
{
float x = 3.0;
while (x !'= 4.0) {
printf("x = %f\n", x);

X += 0.1;
b
return 0O;
b

In the above code, the loop will run infinite times as the computer represents a
floating-point value as a real value. The computer will represent the value of 4.0 as
3.999999 or 4.000001, so the condition (x '=4.0) will never be false. The solution to
this problem is to write the condition as (k<=4.0).



	C Loops
	Why use loops in C language?
	Advantage of loops in C

	Types of C Loops
	do-while loop in C
	while loop in C
	for loop in C


	do while loop in C
	do while loop syntax
	Example 1
	Output
	Flowchart of do while loop

	while loop in C
	Syntax of while loop in C language
	Flowchart of while loop in C
	Example of the while loop in C language
	Output

	Program to print table for the given number using while loop in C
	Output

	Properties of while loop
	Example 1
	Output
	Example 2
	Output (1)
	Example 3

	Infinitive while loop in C

	for loop in C
	Syntax of for loop in C
	Flowchart of for loop in C
	C for loop Examples
	C Program: Print table for the given number using C for loop
	Properties of Expression 1
	Properties of Expression 2
	Properties of Expression 3

	Loop body
	Infinitive for loop in C

	Nested Loops in C
	Infinite Loop in C
	What is infinite loop?
	When to use an infinite loop
	For loop
	while loop



