C Programming Operators

An operator is a symbol that operates on a value or a variable. For
example: + is an operator to perform addition.
C has a wide range of operators to perform various operations.

C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition,

subtraction, multiplication, division etc on numerical values (constants and

variables).
Operator Meaning of Operator
+ addition or unary plus
- subtraction or unary minus
i multiplication
/ division
% remainder after division (modulo division)

Example 1: Arithmetic Operators

// Working of arithmetic operators
#include <stdio.h>

int main()

{
inta=9,b=4,c;

c = atb;
printf("a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n",c);
c = a*b;
printf("a*b = %d \n",c);
c =a/b;

printf("a/b = %d \n",c);
c = a%b;
printf("Remainder when a divided by b = %d \n",c);

Output

atb =13
a-b=5

a*b = 36
a/b=2
Remainder when a divided by b=1

The operators +, - and * computes addition, subtraction, and multiplication
respectively as you might have expected.

In normal calculation, 9/4 = 2.25. However, the output is 2 in the program.

It is because both the variables a and b are integers. Hence, the output is also
an integer. The compiler neglects the term after the decimal point and shows
answer 2 instead of 2.25.

The modulo operator % computes the remainder. When a=9 is divided by b=4,
the remainder is 1. The % operator can only be used with integers.

Suppose a=5.0,b=2.0,c=5and d=2. Then in C programming,

// Either one of the operands is a floating-point number
a/b=25

a/d=25

c/b=2.5

// Both operands are integers

c/d=2

C Increment and Decrement Operators

C programming has two operators increment ++ and decrement - to change
the value of an operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement - decreases the
value by 1. These two operators are unary operators, meaning they only
operate on a single operand.

Example 2: Increment and Decrement Operators

// Working of increment and decrement operators
#include <stdio.h>
main()
{
a=10,b=100;
c=10.5,d=100.5;

printf("++a = %d \n", ++a);
printf("--b = %d \n", --b);

printf("++c = %f \n", ++c);
printf("--d = %f \n", --d);

++c = 11.500000
--d = 99.500000

Here, the operators ++ and - are used as prefixes. These two operators can
also be used as postfixes like a++ and a-. Visit this page to learn more about

how increment and decrement operators work when used as postfix.

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most

common assignment operator is =

Operator Example Same as
= a=b a=b

+= a+=b a=atb
-= a-=b a=ab
= a=b a=a*b
/= a/=b a=a/b
%= a%=b a=a%b

Example 3: Assignment Operators

// Working of assignment operators
#include <stdio.h>

printf("c = %d\n", c);
c+=a, //cis10
printf("c = %d\n", c);
c-=a, //cisb5
printf("c = %d\n", c);
c*=a;, //cis25
printf("c = %d\n", c);
c/=a //cisd
printf("c = %d\n", c);
c%=a, //c=0
printf("c = %d\n", c);

C Relational Operators

A relational operator checks the relationship between two operands. If the

relation is true, it returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example
== Equal to 5==3is evaluatedto 0
> Greater than 5>3is evaluatedto 1

Operator Meaning of Operator Example

< Less than 5<3is evaluated to 0
I= Not equal to 51=3is evaluated to 1
>= Greater than or equal to 5>=3is evaluated to 1
<= Less than or equal to 5<=3is evaluated to 0

Example 4: Relational Operators

// Working of relational operators
#include <stdio.h>
main()

a=5b=5c=10;

printf("%d == %d is %d \n", a, b, a == b);
printf("%d == %d is %d \n", a, ¢, a == ¢);
printf("%d > %d is %d \n", a, b, a > b);
printf("%d > %d is %d \n", a, ¢, a > ¢);
printf("%d < %d is %d \n", a, b, a < b);
printf("%d < %d is %d \n", a, ¢, a < c);
printf("%d != %d is %d \n", a, b, a != b);
printf("%d != %d is %d \n", 4, ¢, a !=¢);

printf("%d >= %d is %d \n", a, b, a >= b);
printf("%d >= %d is %d \n", a, ¢, a >= ¢);
printf("%d <= %d is %d \n", a, b, a <= b);
printf("%d <= %d is %d \n", a, ¢, a <= c);

5==10is 0
5>5is0
5>10is0
5<5is0

5<10is 1
51=5is0
51=10is 1
5>=5is 1

5>=10is 0
5<=5is1
5<=10is 1

C Logical Operators

An expression containing logical operator returns either 0 or 1 depending
upon whether expression results true or false. Logical operators are
commonly used in decision making in C programming.

Operator Meaning Example
Logical AND. True only if all If c = 5and d = 2 then, expression ((c==!
&&
operands are true (d>5)) equals to 0.
I Logical OR. True only if either one If c = 5and d = 2 then, expression ((c==:
operand is true (d>5)) equals to 1.

Logical NOT. True only if the

operand is 0 If c = 5 then, expression !(c==5) equals t

Example 5: Logical Operators

// Working of logical operators

#include <stdio.h>
int main()

{

inta=5b=5,¢c=10, result;

result = (a ==
printf("(a==b

b) && (c > b);
) && (¢ > b) is %d \n", result);

result = (a
printf("(a =

b) && (c < b);
) && (c < b) is %d \n", result);

b

result = (a==b) || (c < b);
printf("(a == b) || (c < b) is %d \n", result);

result = (a!=b) || (c < b);
printf("(a!=b) || (c < b) is %d \n", result);

result = I(a = b);
printf("!(a != b) is %d \n", result);

result = I(a == b);
printf("l(a == b) is %d \n", result);

(@a==b)&&(c>b)is1
(a==b)&& (c<b)is0
(@a==b)||(c<b)is1
(@'=b) |l (c<b)is0
l(a!=b)is 1
l(@a==b)is0

Explanation of logical operator program

(a==b) && (c > 5) evaluates to 1 because both operands (a==b) and (c>b) is 1
(true).

(a==b) && (c < b) evaluates to 0 because operand (c <b) is 0 (false).

(a==b) || (c<b) evaluates to 1 because (a=b) is 1 (true).

(a!=b) || (c < b) evaluates to 0 because both operand (a'=b) and (c <b) are 0 (false).
I(a!=b) evaluates to 1 because operand (a!=b) is 0 (false). Hence, !(a!=b) is 1
(true).

I(a == b) evaluates to 0 because (a==b) is 1 (true). Hence, !(a==b) is 0 (false).

C Bitwise Operators

During computation, mathematical operations like: addition, subtraction,
multiplication, division, etc are converted to bit-level which makes processing
faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators
& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR
~ Bitwise complement
<< Shift left

>> Shift right

Visit bitwise operator in C to learn more.

Other Operators

Comma Operator

Comma operators are used to link related expressions together. For example:

The sizeof operator

The sizeof is a unary operator that returns the size of data (constants, variables,
array, structure, etc).
Example 6: sizeof Operator

#include <stdio.h>
main()

printf("Size of int=%lu bytes\n", (@));
printf("Size of float=%lu bytes\n", (b));
printf("Size of double=%lu bytes\n", (©);
printf("Size of char=%lu byte\n", (d));

Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte

