Data Type is the classification of the data that is taken as input, processed, and results
in an output. It is how we categorize data according to its type.

There are three type of Data Types:
= Primary data types
= Secondary data types
= User-defined data types

These data types are further subdivided into several other data types which you can find

in the figure below:
EData Types in Cj

User-defined | Primary Secondary |
Data types Data Types Data Types |

—

« structure - Int
. union « Char

. enum + float
* double

—

~

. array
. pointer etc

Data types in C
1. Primary Data Types

Primary data types, also known as ‘primitive data type’ or ‘fundamental data type’, are
the built-in data types that are provided by the programming language. It defines the
most basic data like int, char, float, etc.

Primary data types could be of several types like an int can be unsigned int, short int,
unsigned long int, etc. With such a wide range of classification and variety, the
programmer has got many different data types to choose from as per the requirement
and use it in their code along with the advantage of the secondary data types.

Here are the most commonly used primary data types:

boolean
byte
char
short
int

long
float
double

‘Void' is another primary data type that means ‘no value'. It is usually used to define the
type of return value in a function. A function with a void return type does not return any
value.

1.1. Integer Data Type

Integer data types are used to define the variables taking integer values with or without
constant values given to them. The most commonly used keyword or the data type used
to define the integer type data is ‘int’. There are other data types

like ‘short’ and ‘long’ used to define integer values but they have different ranges (we
use them as per the requirement of the program i.e. if we are sure that our requirement
is small and it will never go beyond the range of small we shall take small and likewise).
In the tutorial constants, we saw that the range of the constants differed for different
compilers.

Similarly, the size of the integer data type (in bytes) also differs for different compilers
as shown in the table below:

Compiler int short long
Turbo C/C++(16 bit) 2 2 4
Visual Studio,gec(32 bit) 4 2 4

Size of
int in different compilers

Note that the size of the given data types is in bytes.

The short integer can be used in places where small values and little storage space is
required. It can boost up the runtime because it uses less space. It is declared by using
the keyword ‘short’ or ‘short int’.

The long integer gives us a long range or a bigger size compared to ‘short’ but it can
cause our program to take more time for execution because of the storage size it offers.
It is declared by using the keyword ‘long’ or ‘long int’. The range for a long integer is
—-2147483648 to +2147483647.

This is how we declare the integer variables:

int num,length;

short breadth;
short int height;
long int volume=0;

We have another classification of the integer data type: signed and unsigned int.
In case we need to take positive values only, then we can use unsigned int. Its range is 0

to0 4294967295. This is because the leftmost bit is free and does not need to store the
sign of the number. So, we get more storage space i.e. double on the positive side.

By default, the signed type is declared and we do not need to use signed. Signed int
works like an int. Its range is the same as int.

1.2. Character Data Type

Character data types are used to define variables taking one character as its value. The
keyword used for character data type is ‘char’. Here is how we declare character
variables:

char ch, ch1='A’, ch2=67,

Here, in ch1 variable, we store ‘A, i.e., the binary equivalent of the ASCII value
of A(=binary of decimal 65) gets stored. And ch2 variable stores the value 67(ASCI|
for ‘C’). So these are actually two ways of initializing a character value.

Like integers, here we have signed and unsigned character values. The signed char is
equivalent to char. For a signed char the range is -128 to +127. Whereas, for an
unsigned char the range is from 0 to 255. Here’'s how we declare signed(declared

as char above) and unsigned char values:

unsigned char ch;
char ch1=128;

Surprised to see why | put the value of ch1 as 128? Here’s another thing about this data
type. As mentioned before char has a range of +127 but we have put the value 128 here.
What is going to be the output?

What happens here is that once we reach the end of the range, the other side of the
range is accessed. It goes back to -128 again. So in this case, when it comes across
128 it goes back to the beginning and accesses the char at the ASCII -128.

1.3. Float(and Double) Data Type

Float and double data types are used to define variables that take up a decimal value or
an exponential value. The keyword used for float and double data type

are ‘float’ and ‘double’ respectively.

* Float has a range of —3.4e38 to +3.4e38 and its size is 4 bytes.
= Double has a range of -1.7e308 to +1.7e308 and its size is 8 bytes.

= Another data type that is offered by programming languages is ‘long double’ which has a
range of —1.7e4932 to +1.7e4932 and its size is 10 bytes. Here is how we declare float and
double variables:

float length, area=0.0;
double radius, area=0.0;

2. Secondary Data Types

Secondary data types are basically derived from the primary data types. Let's have a
look at a few secondary data types:

2.1. Arrays

An array is a collection of data of the same data type. These are declared under the
same variable and are accessed using it. If we declare an integer array, all the values in
the array have to be integers. Similarly, for a character array, all the elements of the
array are characters and the same goes for double and every other data type. An array is
declared as follows:

int a[50]; //Declaration
This array has an integer data type and can store 50 integer elements.

2.2. Pointers
A pointer contains the address of a variable in the program.
We declare the pointer as:

int *ip; //Declaration

A pointer declared as integer type stores the address of the integer type variable.
Similarly, a pointer declared as char type stores the address of the character type
variable and so on.

We will discuss about each one of them in detail in future posts.

3. User-defined data types

The user-defined data type defines the data in the way that the programmer chooses.
Let's have a look at these commonly used user-defined data types:

3.1. Structures

It is a collection of variables of different data types represented by the same name.
Unlike an array where we had to store all the data of the same type in the variable, here
one can store data of different data types under the same variable name. It is mostly

used to form records where different specifications need to be stored under the same
name. The struct keyword is used to define a structure.

3.2.Union

Another data type that is very similar to structures. It allows the programmer to store
data of different data types in the same memory location. A union can have multiple
members but it can store only one member at a particular time. The keyword union is
used to define a Union.

3.3. Enum
Enum or Enumeration is used to declare the variables and consists of integral constants.
The keyword enum is used to define the enumeration data type.

Eg: enum identifier{element1, element?2,......., elementn}; It assigns the value
from 0 to n to the elements present inside the identifier sequentially.

Data TypesinC

A data type specifies the type of data that a variable can store such as integer, floating,
character, etc.

There are the following data types in C language.

Types Data Types
Basic Data Type int, char, float, double
Derived Data Type array, pointer, structure, union
Enumeration Data Type enum
Void Data Type void

Basic Data Types

The basic data types are integer-based and floating-point based. C language supports
both signed and unsigned literals.

The memory size of the basic data types may change according to 32 or 64-bit
operating system.

Let's see the basic data types. Its size is given according to 32-bit architecture.

Data Types Memory Size Range
char 1 byte -128 to 127
signed char 1 byte -128 to 127
unsigned char 1 byte 0to 255
short 2 byte -32,768 to 32,767
signed short 2 byte -32,768 t0 32,767
unsigned short 2 byte 0 to 65,535
int 2 byte -32,768 to 32,767
signed int 2 byte -32,768 to 32,767
unsigned int 2 byte 0 to 65,535
short int 2 byte -32,768 t0 32,767
signed short int 2 byte -32,768 t0 32,767
unsigned short int 2 byte 0to 65,535
long int 4 byte -2,147,483,648 10 2,147,483,647
signed long int 4 byte -2,147,483,648 10 2,147,483,647
unsigned long int 4 byte 0to 4,294,967,295

float 4 byte

auto

double

int

struct

double 8 byte

long double 10 byte

Keywords in C

A keyword is a reserved word. You cannot use it as a variable name, constant name, etc. There are
only 32 reserved words (keywords) in the C language.

A list of 32 keywords in the ¢ language is given below:

break case char const continue default
else enum extern float for goto
long register return short signed sizeof
switch typedef union unsigned void volatile

Variables in C

A variable is a name of the memory location. It is used to store data. Its value can be changed, and it
can be reused many times.

It is a way to represent memory location through symbol so that it can be easily identified.

Let's see the syntax to declare a variable:

type variable_list;
The example of declaring the variable is given below:
int g;

float b;

char c;

Here, a, b, c are variables. The int, float, char are the data types.

do

static

while

We can also provide values while declaring the variables as given below:

int a=10,b=20;//declaring 2 variable of integer type
float f=20.8;

char c='A’;
Rules for defining variables

o Avariable can have alphabets, digits, and underscore.
o A variable name can start with the alphabet, and underscore only. It can't start with a digit.
o No whitespace is allowed within the variable name.

o A variable name must not be any reserved word or keyword, e.qg. int, float, etc.
Valid variable names:
int a;

int _ab;
int a30;

Invalid variable names:
int 2;

intab;

int long;

Types of Variables in C

There are many types of variables in c:

1. local variable
global variable
static variable

automatic variable

o > W N

external variable

> w0~

N o g s~ DN =

Local Variable

A variable that is declared inside the function or block is called a local variable.

It must be declared at the start of the block.

void function1(){

int x=10;//local variable

}

You must have to initialize the local variable before it is used.

Global Variable

A variable that is declared outside the function or block is called a global variable. Any function can
change the value of the global variable. It is available to all the functions.

It must be declared at the start of the block.

int value=20;//global variable
void function1(){
int x=10;//local variable

}
Static Variable

A variable that is declared with the static keyword is called static variable.

It retains its value between multiple function calls.

void function1(){

int x=10;//local variable

static int y=10;//static variable

X=x+1;

y=y+1;

printf("%d,%d" x,y);

}

If you call this function many times, the local variable will print the same value for each function call,

e.g, 11,11,11 and so on. But the static variable will print the incremented value in each function call,
e.g. 11,12,13 and so on.

A w0

o =

Automatic Variable

All variables in C that are declared inside the block, are automatic variables by default. We can
explicitly declare an automatic variable using auto keyword.

void main(){
int x=10;//local variable (also automatic)

auto int y=20;//automatic variable

}
External Variable

We can share a variable in multiple C source files by using an external variable. To declare an
external variable, you need to use extern keyword.

myfile.h

extern int x=10;//external variable (also global)
programi.c

#include "myfile.h"
#include <stdio.h>
void printValue(){

printf("Global variable: %d", global_variable);

