Introduction to high level language-

In computer science, a high-level programming languageis aprogramming language with
strong abstraction from the details of the computer. In contrast to low-level programming languages,
it may use natural language elements, be easier to use, or may automate (or even hide entirely)
significant areas of computing systems (e.g. memory management), making the process of
developing a program simpler and more understandable than when using a lower-level language.
The amount of abstraction provided defines how "high-level" a programming language is. In the
1960s, high-level programming languages using a compiler were commonly
called autocodes Examples of autocodes are COBOL and Fortran. The first high-level programming
language designed for computers was Plankalkdil, created by Konrad Zuse. However, it was not
implemented in his time, and his original contributions were largely isolated from other
developments due to World War I, aside from the language's influence on the "Superplan” language
by Heinz Rutishauser and also to some degree Algol. The first significantly widespread high-level
language was Fortran, a machine-independent development of IBM's
earlier Autocode systems. Algol, defined in 1958 and 1960 by committees of European and
American computer scientists, introduced recursion as well as nested functions under lexical scope.
It was also the first language with a clear distinction between value and name-parameters and their
corresponding semantics. Algol also introduced several structured programming concepts, such as
the while-do and if-then-else constructs and its syntax was the first to be described in formal
notation - "Backus—Naur form" (BNF). During roughly the same
period, Cobol introduced records (also called structs) and Lisp introduced a fully general lambda
abstraction in a programming language for the first time.

"High-level language" refers to the higher level of abstraction from machine language. Rather than
dealing with registers, memory addresses, and call stacks, high-level languages deal with variables,
arrays, objects, complex arithmetic or boolean expressions, subroutines and functions,
loops, threads, locks, and other abstract computer science concepts, with a focus on usability over
optimal program efficiency. Unlike low-level assembly languages, high-level languages have few, if
any, language elements that translate directly into a machine's native opcodes. Other features, such
as string handling routines, object-oriented language features, and file input/output, may also be
present. One thing to note about high-level programming languages is that these languages allow
the programmer to be detached and separated from the machine. That is, unlike low-level languages
like assembly or machine language, high-level programming can amplify the programmer's
instructions and trigger a lot of data movements in the background without their knowledge. The
responsibility and power of executing instructions have been handed over to the machine from the
programmer.

Introduction to Low/Middle/High Level Languages-

¢ Low level languages / Machine Oriented Languages

The language whose design is governed by the circuitry and the structure of the
machine is known as the Machine language. This language is difficult to learn and use.
It is specific to a given computer and is different for different computers i.e. these
languages are machine-dependent. These languages have been designed to give a
better machine efficiency, i.e. faster program execution. Such languages are also known
as Low Level Languages.

¢ High level Languages

They are easy to learn and programs may be written in these languages with much less
effort. However, the computer cannot understand them and they need to be translated



into machine language with the help of other programs known as Compilers or
Translators. Like C++, Java, Python

¢ Middle level Languages

It bridges gap between machine understandable machine level language and more
conventional high-level language. This programming helps in writing system
programming as well as application programming. Because C language has both the
feature of high level and low-level language so it is often called middle level language.

Difference between high level and low level lang-

It is programmer friendly

1. language. It is a machine friendly language.
High level language is less Low level language is high memory

2. memory efficient. efficient.

3. Itis easy to understand. It is tough to understand.

4. Itis simple to debug. It is complex to debug comparatively.

It is complex to maintain

5. ltis simple to maintain. comparatively.
6. Itis portable. It is non-portable.
7. ltcanrunon any platform. It is machine-dependent.

It needs compiler or interpreter for
8. translation. It needs assembler for translation.

It is not commonly used now-a-days in
9. Itis used widely for programming.  programming






