
C if else Statement

The if-else statement in C is used to perform the operations based on some specific

condition. The operations specified in if block are executed if and only if the given

condition is true.

There are the following variants of if statement in C language.

o If statement

o If-else statement

o If else-if ladder

o Nested if

If Statement

The if statement is used to check some given condition and perform some operations

depending upon the correctness of that condition. It is mostly used in the scenario
where we need to perform the different operations for the different conditions. The

syntax of the if statement is given below.

if(expression){

//code to be executed

}

Flowchart of if statement in C

Let's see a simple example of C language if statement.

#include<stdio.h>

int main(){

int number=0;

printf("Enter a number:");

scanf("%d",&number);

if(number%2==0){

printf("%d is even number",number);

}

return 0;

}

Output

Enter a number:4

4 is even number

enter a number:5

Program to find the largest number of the three.

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("Enter three numbers?");

 scanf("%d %d %d",&a,&b,&c);

 if(a>b && a>c)

 {

 printf("%d is largest",a);

 }

 if(b>a && b > c)

 {

 printf("%d is largest",b);

 }

 if(c>a && c>b)

 {

 printf("%d is largest",c);

 }

 if(a == b && a == c)

 {

 printf("All are equal");

 }

}

Output

Enter three numbers?

12 23 34

34 is largest

If-else Statement

The if-else statement is used to perform two operations for a single condition. The if-
else statement is an extension to the if statement using which, we can perform two

different operations, i.e., one is for the correctness of that condition, and the other is
for the incorrectness of the condition. Here, we must notice that if and else block
cannot be executed simiulteneously. Using if-else statement is always preferable since
it always invokes an otherwise case with every if condition. The syntax of the if-else

statement is given below.

if(expression){

//code to be executed if condition is true

}else{

//code to be executed if condition is false

}

Flowchart of the if-else statement in C

Let's see the simple example to check whether a number is even or odd using if-else

statement in C language.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number%2==0){

printf("%d is even number",number);

}

else{

printf("%d is odd number",number);

}

return 0;

}

Output

enter a number:4

4 is even number

enter a number:5

5 is odd number

Program to check whether a person is eligible to vote or not.

#include <stdio.h>

int main()

{

 int age;

 printf("Enter your age?");

 scanf("%d",&age);

 if(age>=18)

 {

 printf("You are eligible to vote...");

 }

 else

 {

 printf("Sorry ... you can't vote");

 }

}

Output

Enter your age?18

You are eligible to vote...

Enter your age?13

Sorry ... you can't vote

If else-if ladder Statement

The if-else-if ladder statement is an extension to the if-else statement. It is used in the
scenario where there are multiple cases to be performed for different conditions. In if-
else-if ladder statement, if a condition is true then the statements defined in the if block
will be executed, otherwise if some other condition is true then the statements defined

in the else-if block will be executed, at the last if none of the condition is true then the
statements defined in the else block will be executed. There are multiple else-if blocks
possible. It is similar to the switch case statement where the default is executed instead

of else block if none of the cases is matched.

if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

...

else{

//code to be executed if all the conditions are false

}

Flowchart of else-if ladder statement in C

The example of an if-else-if statement in C language is given below.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number==10){

printf("number is equals to 10");

}

else if(number==50){

printf("number is equal to 50");

}

else if(number==100){

printf("number is equal to 100");

}

else{

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

Program to calculate the grade of the student according to the
specified marks.

 #include <stdio.h>

int main()

{

 int marks;

 printf("Enter your marks?");

 scanf("%d",&marks);

 if(marks > 85 && marks <= 100)

 {

 printf("Congrats ! you scored grade A ...");

 }

 else if (marks > 60 && marks <= 85)

 {

 printf("You scored grade B + ...");

 }

 else if (marks > 40 && marks <= 60)

 {

 printf("You scored grade B ...");

 }

 else if (marks > 30 && marks <= 40)

 {

 printf("You scored grade C ...");

 }

 else

 {

 printf("Sorry you are fail ...");

 }

}

Output

Enter your marks?10

Sorry you are fail ...

Enter your marks?40

You scored grade C ...

Enter your marks?90

Congrats ! you scored grade A ...

C Switch Statement

The switch statement in C is an alternate to if-else-if ladder statement which allows us
to execute multiple operations for the different possibles values of a single variable

called switch variable. Here, We can define various statements in the multiple cases for

the different values of a single variable.

ADVERTISEMENT

The syntax of switch statement in c language is given below:

1. switch(expression){

2. case value1:

3. //code to be executed;

4. break; //optional

5. case value2:

6. //code to be executed;

https://www.javatpoint.com/c-programming-language-tutorial

7. break; //optional

8.

9.

10. default:

11. code to be executed if all cases are not matched;

12. }

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break

statement found in the case, all the cases will be executed present after the matched

case. It is known as fall through the state of C switch statement.

Let's try to understand it by the examples. We are assuming that there are following

variables.

nt x,y,z;

char a,b;

float f;

Valid Switch Invalid Switch Valid Case Invalid Case

switch(x) switch(f) case 3; case 2.5;

switch(x>y) switch(x+2.5) case 'a'; case x;

switch(a+b-2) case 1+2; case x+2;

switch(func(x,y)) case 'x'>'y'; case 1,2,3;

Flowchart of switch statement in C

Functioning of switch case statement

First, the integer expression specified in the switch statement is evaluated. This value is
then matched one by one with the constant values given in the different cases. If a
match is found, then all the statements specified in that case are executed along with
the all the cases present after that case including the default statement. No two cases

can have similar values. If the matched case contains a break statement, then all the
cases present after that will be skipped, and the control comes out of the switch.

Otherwise, all the cases following the matched case will be executed.

Let's see a simple example of c language switch statement.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number){

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

Switch case example 2

#include <stdio.h>

int main()

{

 int x = 10, y = 5;

 switch(x>y && x+y>0)

 {

 case 1:

 printf("hi");

 break;

 case 0:

 printf("bye");

 break;

 default:

 printf(" Hello bye ");

 }

}

Output

hi

C Switch statement is fall-through

In C language, the switch statement is fall through; it means if you don't use a break

statement in the switch case, all the cases after the matching case will be executed.

Let's try to understand the fall through state of switch statement by the example given

below.

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number){

case 10:

printf("number is equal to 10\n");

case 50:

printf("number is equal to 50\n");

case 100:

printf("number is equal to 100\n");

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:10

number is equal to 10

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Output

enter a number:50

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Nested switch case statement

We can use as many switch statement as we want inside a switch statement. Such type

of statements is called nested switch case statements. Consider the following example.

#include <stdio.h>

int main () {

 int i = 10;

 int j = 20;

 switch(i) {

 case 10:

 printf("the value of i evaluated in outer switch: %d\n",i);

 case 20:

 switch(j) {

 case 20:

 printf("The value of j evaluated in nested switch: %d\n",j);

 }

 }

 printf("Exact value of i is : %d\n", i);

 printf("Exact value of j is : %d\n", j);

 return 0;

}

Output

the value of i evaluated in outer switch: 10

The value of j evaluated in nested switch: 20

Exact value of i is : 10

Exact value of j is : 20

	C if else Statement
	If Statement
	Program to find the largest number of the three.

	If-else Statement
	Program to check whether a person is eligible to vote or not.

	If else-if ladder Statement
	Program to calculate the grade of the student according to the specified marks.
	#include <stdio.h>

	C Switch Statement
	Rules for switch statement in C language
	Flowchart of switch statement in C

	Functioning of switch case statement
	Switch case example 2
	C Switch statement is fall-through

	Nested switch case statement

