
 

 

Differential Scanning Calorimetry 

Introduction 
 

Differential scanning calorimetry (DSC) is a technique for measuring the energy necessary to 
establish a nearly zero temperature difference between a substance and an inert reference ma- 
terial, as the two specimens are subjected to identical temperature regimes in an environment 
heated or cooled at a controlled rate. 

There are two types of DSC systems in common use (Fig. 1). In power–compensation DSC the 
temperatures of the sample and reference are controlled independently using separate, identical 
furnaces. The temperatures of the sample and reference are made identical by varying the 
power input to the two furnaces; the energy required to do this is a measure of the enthalpy 
or heat capacity changes in the sample relative to the reference. 

In heat–flux DSC, the sample and reference are connected by a low–resistance heat–flow path 
(a metal disc). The assembly is enclosed in a single furnace. Enthalpy or heat capacity changes 
in the sample cause a difference in its temperature relative to the reference; the resulting heat 
flow is small compared with that in differential thermal analysis (DTA) because the sample 
and reference are in good thermal contact. The temperature difference is recorded and related 
to enthalpy change in the sample using calibration experiments. 

 
 
 

 

 
Fig. 1: (a) Heat flux DSC; (b) power–compensation DSC 

 

Heat–flux DSC 
 

This section is based largely on a description of the Dupont DSC system by Baxter and Greer. 
The system is a subtle modification of DTA, differing only by the fact that the sample and 



− 

− 

reference crucibles are linked by good heat–flow path. The sample and reference are enclosed 
in the same furnace. The difference in energy required to maintain them at a nearly identical 
temperature is provided by the heat changes in the sample. Any excess energy is conducted 
between the sample and reference through the connecting metallic disc, a feature absent in 
DTA. As in modern DTA equipment, the thermocouples are not embedded in either of the 
specimens; the small temperature difference that may develop between the sample and the 
inert reference (usually an empty sample pan and lid) is proportional to the heat flow between 
the two. The fact that the temperature difference is small is important to ensure that both 
containers are exposed to essentially the same temperature programme. 

The main assembly of the DSC cell is enclosed in a cylindrical, silver heating black, which 
dissipates heat to the specimens via a constantan disc which is attached to the silver block. 
The disc has two raised platforms on which the sample and reference pans are placed. A 
chromel disc and connecting wire are attached to the underside of each platform, and the re- 
sulting chromel–constantan thermocouples are used to determine the differential temperatures 
of interest. Alumel wires attached to the chromel discs provide the chromel–alumel junctions 
for independently measuring the sample and reference temperature. A separate thermocouple 
embedded in the silver block serves a temperature controller for the programmed heating cycle. 

An inert gas is passed through the cell at a constant flow rate of about 40 ml min−1). 

The thermal resistances of the system vary with temperature, but the instruments can be used 
in the ‘calibrated’ mode, where the amplification is automatically varied with temperature to 
give a nearly constant calorimetric sensitivity. 

 
Heat Flow in Heat–Flux DSC Systems 

 
A variety of temperature lags develop between the specimens and thermocouples, since the 
latter are not in direct contact with the samples. The measured ∆T is not equal to TS TR 

where TS and TR are the sample and reference temperatures respectively. TS TR may be 
deduced by considering the heat flow paths in the system. 

The following additional notation (due to Greer and Baxter) is relevant (Fig. 2): 

 
TSP , TRP = Temperature of the sample and reference platforms, respectively, as 
measured by the thermocouples. TSP is normally plotted as the abscissa of a DSC 
curve. 

TF = Temperature of the silver heating block. 

RD =Thermal resistance between the furnace wall and the sample or reference plat- 
forms (units C min J−1). 

RS , RR = Thermal resistances between the sample (or reference) platform and the 
sample (or reference). 

CS , CR = Heat capacity of the sample (or reference) and its container. 

H = Imposed heating rate. 

∆TR = Temperature lag of the reference platform relative to furnace. 

∆TS = Temperature lag of the sample platform relative to furnace. 

∆TL = Temperature lag of the sample relative to the sample thermocouple. 



The following equations then hold: 
 

∆TR  = HRD CR (1) 

∆TS  = HRD CS (2) 

∆T = HRD (CS − CR) (3) 

∆TL  = HRS CS (4) 

∆TS  = ∆TR + ∆T (5) 

∆TL = RS /RD ∆TS (6) 

 
 

 

 

Fig. 2: Thermal resistance diagram representing a heat–flux DSC 

 

 
Calibration: The Temperature Lag ∆TL 

∆TL  is non–zero because the thermocouple is not in direct contact with the sample.  When the 
transition temperature T J does not vary with heating rate, equation 4 indicates that a plot of 
the  apparent T J versus  H  keeping the  other quantities  fixed,  would at zero  H  extrapolate to 
the true value of T J; the apparent T J is the true value plus the lag. 

A plot of the apparent T J versus CS  would also extrapolate to the true T J at CS  = 0, when H 

and RS are kept constant. 

Alternatively,  the  sample  may  be  allowed  to  reach  the  temperature  of  the  sample–platform 

by holding at a temperature just beyond T J, and recording a DSC curve corresponding to the 
equilibration  event.  The  area  of  this  curve  can  then  be  used  to  deduce  the  temperature  lag; 
this kind of an analysis requires more sophisticated equipment than is normally available. 

Another method, due to Greer, is based on equation 6, and involves the evaluation of RS /RD . 
∆TR is measured for a particular reference,  usually just an empty pan and lid.  A heating  

run is first performed with an empty pan on both the sample and reference platforms. This 
provides a baseline, from which measurements of ∆T can be carried out. A second run is then 
performed, with two pans on the sample side, and one on the reference side.  The difference 



between the first and second DSC curves is a measure of ∆TR, as a function of temperature. 
This becomes evident from equations 1 and 3; for the first run, CS and CR are identical and 
hence ∆T = 0, while for the second run CS = 2CR, so that ∆T = ∆TR. 

By repeating this procedure, ∆TR can be obtained as a function of heating rate. To obtain  
the temperature lag ∆TL, more tests are performed, bearing in mind that 

∆TR + ∆T = ∆TS 

Tests are conducted at a variety of heating rates, using a sample with a known transition 
temperature which is independent of heating rate, placed in the sample pan, with an empty 
pan on the reference side. These experiments give values of ∆T , and hence ∆TS , as a function 

of heating rate; the gradient g1 of the graph of ∆TS versus heating rate is equal to RD CS , 

equation 2. Another set of experiments, based on equation 4 then gives a plot of the apparent 
transition temperature as a function of heating rate, and extrapolation to zero H yields the 
true transition temperature – hence a graph of (TL versus H can be plotted, whose gradient g2 

is equal to RS CS , equation 4. Hence, g1/g2 = RD /RS . The temperature lag may be calculated 

(since RS /RD and ∆TR are known) for a given reference and at any heating rate or CS , using 

equation 6. 

 
Temperature Calibration 

 
The temperature plotted on the abscissa of a DSC record is related to the emf generated at the 
thermocouple located under the sample. For standard thermocouple conditions, the emf may 
be reliably converted to temperature units using established calibration charts, but a variety of 
effects can cause the thermocouple to age and shift calibration. It is advisable to calibrate the 
abscissa using substances with precisely known melting points; most DSC instruments have 
facilities which allow calibration over limited temperature ranges. In changing the abscissa 
scale to a true temperature reading, allowances have to be made for the thermal lag effect 
(∆TL), but this can be avoided by using very low heating rates for the purposes of calibration. 

Calorimetric Calibration 
 

Calibration is carried out by measuring the changes in specific heat or in enthalpy content of 
samples for which these quantities are known. When the DuPont instrument is used in the 
calibration mode, the procedure related to equation 2 may be used to measure specific heat 
changes. The heat balance equation for the heat–flux DSC system can be shown to be as 
follows: 

dH J 

=  
TSP  − TRP 

 

+ (C − C )H + C RD + RS 
d(TSP − TRP ) 

 

(7) 
dt RD 

S R S RD dt 

dH J/dt refers to the heat evolution of an exothermic transition; the first term on the right hand 
side is the area under the DSC peak, after correcting for the baseline.  The second term on the 
right refers to the actual baseline, and it is this which is used in specific heat determinations. 
The  last  term  takes  account  of  the  fact  that  some  of  the  evolved  heat  will  be  consumed  by 
the specimen to heat itself, and does not affect the are under the DSC peak, but may distort 
the peak shape.  From equation 7 it is clear that when dH J/dt can be arranged to be zero, the 
second term can be used to determine  specific heat.  The method is involves a comparison of 
the thermal lag between the sample and reference; the system is first calibrated with a sapphire 
specimen, so that 

Csapphire  = EqY/HM 



where M is the mass of the specimen, E is a calibration constant, Csapphire, the specific heat 

capacity of the sapphire, q Y –axis range (J s mm−1) and Y the difference in Y –axis deflection 
between sample (or sapphire) and blank curves at the temperature of interest. 

Enthalpy changes can be determined by measuring the areas under peaks on the DSC curve, 
when the latter is a plot of ∆T versus time. A relationship of the form indicated in equation 1 
then applies, again when the instrument is in the calibrated mode. 

 
The Baseline and the Transformation Curve 

 
In DTA or DSC, it is expedient to conduct experiments either isothermally or with the tem- 
perature changing at a constant rate. In the former case, the ordinate value would be plotted 
against time at isothermal temperature, whereas in the latter case it could be plotted against 
time or temperature. The following discussion is based on the abscissa being a time axis; the 
height referred to is that beyond the baseline. 

For  DTA  the  height  of  the  curve  at  any  particular  time  t  is  a  measure  of  the  difference  in 
temperature,  ∆T ,  between  the  sample  and  the  reference.   For  power  compensated  DSC,  the 
height of the curve at some particular time t is a measure of the heat evolving from the sample 
per  unit  time,  dH J/dt  (this  also  applies  to  heat  flux  DSC,  after  suitable  calibration).   For 
either  DTA  or  DSC,  one  can  assume  that  ∆T  is  proportional  to  dx/dt  or  dH J/dt to  dx/dt, 
respectively.  Here,  x refers  to  the  volume  fraction  of  transformation,  t to  the  time  measured 
from the point where the appropriate curve departs from the baseline, and H J to the enthalpy 
change.  The constants of proportionality follow from the condition that the total area under 
the  DTA  or  DSC  corresponds  to  either  x  =  1,  or  to  x  equal  to  some  constant  value  if  the 
transformation terminates prematurely. 

This assumes that a reliable baseline can be obtained from the experimental information. The 
baseline can be visually estimated for sharp peaks without entailing large errors; for broad 
peaks it is difficult to qualitatively establish the baseline. The problem is complicated by the 
fact that the DSC instrumental baseline on either side of the peak is not a no–signal line. Even 
in the absence of a transition, the instrument measures the effect of the heat capacity of the 
sample, which may vary with temperature. This variation is usually nearly linear, but the 
curvature becomes noticeable over wide temperature ranges. 

One approximation to the baseline is a straight line connecting the start and finish of the 
transformation. Other methods involve the use of stepped baselines; the parent and product 
parts of the experimental curve are linearly extrapolated towards the centre of the experimental 
profile, and are connected by a vertical step at the position of the peak. Again, this method 
has no fundamental basis. The most reliable way of constructing the baseline is an iterative 
technique due to Scott and Ramachandrarao. The fractions transformed are first calculated 
approximately, using a linear baseline between the initial and final points of the reaction. 
The baselines of the parent and product are then extrapolated under the peak; this gives two 
separate baselines, since the heat capacities of the parent and pure product differ. The true 
baseline at any t is taken to be at a position between the extrapolated baselines. The exact 
positioning of the new baseline between the extrapolated parent and product baselines depends 
on an estimated value of the amount of product at any time t, using a lever rule type of a 
calculation. The new baseline generated in this manner can then be used as the starting point 
of another iteration and the process can be repeated to the desired accuracy. One iteration 
seems good enough for most purposes. 

A subtle correction which has to be taken into account when constructing transformation 



curves from DSC curves is that the peak shape (rather than peak area) can be expected to  
be distorted, because some of any energy evolved may serve to the heat sample itself. In 
continuous heating experiments, the magnitude of this effect can be shown to be proportional 
to the heat capacity of the sample and to the rate of change of the differential temperature 
with time. 

 
Autocatalysis and Recalescence 

 
Calorimetric experiments can be adiabatic or isothermal. The temperature is maintained 
constant in an isothermal experiment, whereas heat is neither added nor removed from the 
system during an adiabatic experiment. In practice, experiments fall somewhere between the 
ideal isothermal and adiabatic conditions. 

In an experiment where the rate of heat evolution is large relative to the capacity of the 
calorimeter to maintain isothermal conditions, the specimen temperature rises beyond the de- 
sired level, until a steady state is reached. This adiabatic rise in temperature will affect the rate 
of reaction, which may in term exaggerate the evolution of heat. This effect is known as auto- 
catalysis. Recalescence describes the case where the release of heat reduces the transformation 
rate. 

 
Kinetics of Glass Crystallisation 

 
Both DSC and DTA have been used to study of the crystallisation of glasses. With few 
exceptions, the results have been analysed using Johnson–Mehl–Avrami equations with little 
attention to the mechanism of crystallisation. The general form of the equations is: 

 
x = 1 − exp{−ktn} (8) 

where x is the volume fraction of transformation at time t, k is a function of transforma-  
tion temperature, and n is a parameter which can in special cases give an indication of the 
mechanisms involved. The equation applies to isothermal transformations with the following 
assumptions: 

 
1. It is assumed that the growth rate is constant, i.e. there is no composition change 

during transformation. 

2. Modern calorimetric experiments use small quantities of samples; it is assumed the 
free surfaces of these samples do not affect the kinetics of transformation. 

3. The extended volume concept on which the Avrami equation is based relies on 
random nucleation. 

 

Activation Energy 
 

The term k is temperature dependent since it is a function of the nucleation and growth rates of 
the transformation product; for most solid–state transformations both of these processes can be 
expected to be thermally activated. Consider a transformation in which nucleation is random, 
the nucleation and growth rates are constant and where growth is isotropic. Equation 8 
becomes: 

x = 1 − exp{−Y 3It4/3} (9) 



p 

p 

{ } 

− 

where Y is the growth rate and Iis the nucleation rate per unit volume. Hence, 

k = Y 3I/3 

= C1(C2 exp{−GY /RT })3(C3(exp{−GI/RT }) 

= C4(exp((−3GY − GI )/RT }) 

 
 
 

(10) 

where  GY    and  GI   are  the  activation  free  energies  for  growth  and  nucleation,  respectively, 

and  both  are  assumed  to  be  independent  of  temperature  (R is  the  gas  constant).   A  further 
assumption is that the growth and nucleation events are both singly activated processes.  The 
activation  energies  of  equation  10  may  be  lumped  together  into  a  single  effective  activation 

energy  given  by  GJ,  which  is  the  term  really  obtained  from  an  analysis  using  equation  9.  GJ 

cannot be isolated using this analysis since x depends on more than just the growth rate. 

For  isothermal  transformation  experiments,  GJ can  be  obtained  plotting  the  time  taken  to 
achieve  a  fixed  amount  of  transformation  (i.e.  tx  )  versus  1/T ,  a  plot  based  on  equation  11 
below, which is derived from equation 10: 

tx  = C5 exp{GJ/nRT } (11) 

It is difficult to determine the activation energy from anisothermal experiments. For any 
thermally activated process, the DTA or DSC peaks will shift with heating rate; Kissinger 
derived a relationship between the peak shift and the effective activation energy, assuming 
homogeneous transformation: 

dx/dt = C6(1 − x)m exp{−GJ/RT } (12) 

where m is the order of the reaction, and the other terms have their usual meanings. Kissinger 
showed that 

d(ln{H/T 2}) 
 

 

d(1/Tp) = 
GJ 

R 
(13) 

where H is the heating rate used and Tp is the sample temperature at which the maximum 
deflection in the DTA or DSC curve is recorded. The equation requires that Tp equals the 
temperature at which the maximum reaction rate occurs. 

Most solid–state reactions are not homogeneous, but proceed by nucleation and growth events. 

Hence  the  GJ value  obtained  through  equation  13  must  not  be  compared  with  that  obtained 
from isothermal experiments which obey the Johnson–Mehl–Avrami equation.  Henderson has 
shown that for reactions that obey equation 8, a plot of ln{H/T 2} versus 1/Tp  should have  a 

slope of −GJ/nR rather than the −GJ/R of equation 13. 

Marseglia  has  suggested  that  the  activation  energy  GJ for  anisothermal  experiments  can  be 
deduced from a plot of ln  H/Tp    versus 1/Tp.  The difference between Marseglia and Henderson 
arises because the former takes account of the variation of k with time, whereas the latter does 
not.  However, the manner in which the dependence of k on time is taken into account is not 
rigourous: 

dk 
=  

dk  dT  
=  

dk 
H

 

dt dT   dt dT 

Thus, the variation in growth rate with time is not fully accounted for. 

Phase Transitions 
 

Thermal analysis techniques have the advantage that only a small amount of material is nec- 
essary. This ensures uniform temperature distribution and high resolution. The sample can be 



encapsulated in an inert atmosphere to prevent oxidation, and low heating rates lead to higher 
accuracies. The reproducibility of the transition temperature can be checked by heating and 
cooling through the critical temperature range. 

During a first order transformation, a latent heat is evolved, and the transformation obeys the 
classical Clausius–Clapeyron equation. Second order transitions do not have accompanying 
latent heats, but like first order changes, can be detected by abrupt variations in compressibility, 
heat capacity, thermal expansion coefficients and the like. It is these variations that reveal 
phase transformations using thermal analysis techniques. 

Because of the sensitivity of liquid–vapour transitions  to pressure,  additional precautions  are 
called for when testing for boiling points or enthalpy changes.  The ambient pressure is required; 
the peak area no longer corresponds to the latent heat of vaporisation in any simple way.  The 
transition temperature T J is related to the pressure P  by the Clausius–Clapeyron equation 

ln{P } = L/RT J + C 

where L is the molar heat of vaporisation and C is an integration constant.  L can be obtained 

using  the  Clausius-Clapeyron  equation  and  a  set  of  measured  P, T J  values,  assuming  L  is 
independent  of  temperature,  that  the  volume  of  the  vapour  phase  far  exceeds  that  of  the 
liquid, and that the vapour behaves as an ideal gas. 

Greater care is needed when studying solid–solid transitions where the enthalpy changes are 
much smaller than those associated with vaporisation. Stored energy in the form of elastic 
strains and defects can contribute to the energy balance, so that the physical state of the 
initial solid, and the final state of the product, become important. This stored energy reduces 
the observed enthalpy change. 

 

Polymer Crystallinity 
 

It is assumed that a volume fraction V of the polymer consists of perfectly crystalline material 
which melts i.e. becomes amorphous, over the course of the experiment. The matrix which is 
not crystalline is assumed to be perfectly amorphous. The transition from the crystalline to 
the amorphous state is accompanied by a heat of “fusion”, written HFO when it occurs at the 

pure crystal “melting” point T0. The fraction V of crystalline phase can be determined for a 
partially crystalline specimen by comparing the measured heat of fusion with HFO . Imagine 

a DSC experiment in which a partially crystalline polymer is heated from a temperature T1 to 
T2 where the polymer becomes completely amorphous (T1 < T0 < T2). The enthalpy changes 
can be analysed in the following phenomenological sequence (Fig. 3): 

 
a) Both the crystalline and amorphous phases are first heated, without transformation 

to T0. The enthalpy change for this process is 

Ha = V (HC,1−0) + (1 − V )(HA,1−0) 

where the last two terms simply represent the change in heat content of the crys- 
talline and amorphous components, respectively on heating form T1 to T0. Ha can 

be deduced from the DSC curve by measuring the area between the section of the 
DSC curve obtained before any change in V , linearly extrapolated over the range T1 

to T0, and the instrumental baseline (i.e. the no-sample baseline). 

b) At T0 the crystalline component is allowed to become amorphous. The enthalpy of 
fusion for this is 

Hb = V HF 0 



c) The now completely amorphous material is permitted to rise in temperature from 
T0 to T2, so that the enthalpy change is 

Hc  = HA,0−2 

 


