Example 7.36. Find the z-transform and the ROC of the signal.

$$x(n) = [3(2^n) - 4(3^n)] \cdot u(n)$$

Solution: The given signal is

$$x(n) = [3(2^n) - 4(3^n)] \cdot u(n) \qquad ...(i)$$

Assuming that

$$x_1(n) = 2^n \cdot u(n)$$

and $x_2(n) = 3^n \cdot u(n)$ Then the signal x[n] may be written as

$$x(n) = 3x_1(n) - 4x_2(n)$$
 ...(ii)

According to linearity property, the z-transform of equation (ii) is

$$X(z) = 3X_1(z) - 4X_2(z)$$

Also, we know that

$$\alpha^n u(n) \stackrel{z}{\longleftrightarrow} \frac{1}{1 - \alpha z^{-1}} \text{ ROC} : |z| > |\alpha|$$
 ...(iii)

Substituting $\alpha = 2$ and $\alpha = 3$ in equation (iii), we get

$$x_1(n) = 2^n \cdot u(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$

or

$$x_1(n) = \frac{1}{1 - 2z^{-1}}$$

and

$$x_2(n) = 3^n \cdot u[n] \stackrel{z}{\longleftrightarrow} X_2(z)$$

or

$$x_2(n) = \frac{1}{1 - 3z^{-1}}$$

It may be observed that the intersection of the ROC of $X_1(z)$ and $X_2(z)$ is |z| > 3.

Therefore the overall z-transform X(z) will be

$$X(z) = \frac{3}{1 - 2z^{-1}} - \frac{4}{1 - 3z^{-1}}$$
 ROC: $|z| > 3$

Example 7.37. Evaluate the z-transform of the following signal:

$$x(n) = \left(\frac{1}{2}\right)^n \cdot u(n)$$

Solution: The given signal is

$$x(n) = \left(\frac{1}{2}\right)^n \cdot u(n) \qquad \dots (i)$$

We know that z-transform of a signal x[n] is expressed as

$$Z\{x(n)\} = X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Putting the value of x[n], we get

or $X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cdot u(n) z^{-n}$ [:: u(n) exists only for positive n]

or
$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cdot 1. z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cdot z^{-n}$$

or
$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n = 1 + \left(\frac{1}{2}z^{-1}\right)^2 + \left(\frac{1}{2}z^{-1}\right)^3 + \dots \dots \dots (i_1)$$
The above expression is a well-known geometric progression of the form
$$1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$$
Therefore, the equation (ii) becomes
$$X(z) = \frac{1}{1-\frac{1}{2}z^{-1}} \qquad \text{for } \left|\frac{1}{2}z^{-1}\right| < 1 \text{ or } |z| > \frac{1}{2}$$
Hence
$$X(z) = \frac{z}{z-\frac{1}{2}} \qquad \text{ROC}: |z| > \frac{1}{2}$$
Example 7.38. Find the z-transform of the signal
$$x(n) = -\alpha^n u(-n-1) = \begin{cases} 0 & n \ge 0 \\ -\alpha^n & n \le -1 \end{cases}$$
Solution: The given signal is
$$x(n) = -\alpha^n u(-n-1) = \begin{cases} 0 & n \ge 0 \\ -\alpha^n & n \le -1 \end{cases}$$
We know that z-transform is expressed as
$$Z[x(n)] = X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
According to equation (i)
$$X(z) = \sum_{n=-\infty}^{\infty} (-\alpha^n) z^{-n}$$
Putting $m = -n$
$$X(z) = -\sum_{m=1}^{\infty} (-\alpha^{-1}z)^m$$
Using the formula
$$x + x^2 + x^3 + \dots = \frac{x}{1-x} \qquad \text{for } |x| < 1$$
Therefore, We have
$$X(z) = -\frac{\alpha^{-1}z}{1-\alpha^{-1}z}$$

(b)

$$X(z) = -\frac{1}{1 - \alpha z^{-1}}$$
 for $|\alpha^{-1}z| < 1$ or $|z| < |\alpha|$

$$X(z) = -\frac{1}{1 - \alpha z^{-1}}$$
 ROC: $|z| < |\alpha|$

or

Example 7.39. Find the z-transform of the signal

$$x(n) = na^n.u(n)$$

Solution: The given signal is

$$x(n) = na^n \cdot u(n) \qquad \dots (i)$$

The signal in equation (i) may be expressed as $nx_1(n)$ where $x_1(n) = a^n u(n)$

But, we know that

$$x_1(n) = a^n \cdot u(n) \xleftarrow{z} X_1(z) = \frac{1}{1 - az^{-1}} \quad \text{ROC} : |z| > |a|$$

Also the differentation property states that

If $x(n) \stackrel{z}{\longleftrightarrow} X(z)$

then $nx(n) \longleftrightarrow -z \cdot \frac{dX(z)}{dz}$

Therefore,
$$na^n.u(n) \stackrel{z}{\longleftrightarrow} X(z) = -z \cdot \frac{dX_1(z)}{dz} = \frac{az^{-1}}{(1-az^{-1})^2} \text{ ROC}: |z| > |a|$$

Example 7.40. Find the discrete-time signal x[n] whose z-transform is given as $X(z) = \log (1 + az^{-1})$ |z| > |a|

Solution: The given expression is

$$X(z) = \log (1 + az^{-1})$$
 $|z| > |a|$

Taking the differentiation, we get

$$\frac{dX(z)}{dz} = \frac{-az^{-2}}{1+az^{-1}}$$

Hence

$$-z\frac{dX(z)}{dz} = az^{-1} \left[\frac{1}{1 - (-a)z^{-1}} \right] \qquad |z| > |a| \qquad \dots (i)$$

In equation (i), the inverse z-transform of the term in brackets is $(-a)^n$. The multiplication by z^{-1} means a time-delay of one sample (i.e. time-shifting property) which results in $(-a)^{n-1}$. u[n-1].

In last, from the differentiation property, we get

$$nx(n) = a(-a)^{n-1}.u(n-1)$$

or

$$x(n) = (-1)^{n+1} \cdot \frac{a^n}{n} \cdot u(n-1) \quad \text{Ans.}$$

Example 7.41. Find the pole-zero plot for the discrete-time causal signal

$$x(n) = a^n.u(n) \qquad a > 0$$

Solution: We know that the z-transform is expressed as

$$Z\{x(n)\} = X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} a^n \cdot u(n) z^{-n} = \sum_{n=0}^{\infty} a^n \cdot 1 \cdot z^{-n} \qquad [\because u[n] = 1 \text{ for } n > 0]$$

or

or
$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n$$

or $X(z) = 1 + \frac{a}{z} + \left(\frac{a}{z}\right)^2 + \left(\frac{a}{z}\right)^3 + \dots = \frac{1}{1 - \frac{a}{z}} \left|\frac{a}{z}\right| < 1 \text{ or } |z| > |a|$
or $X(z) = \frac{z}{z - a}$ ROC: $|z| > |a|$...(i)

From equation (i), it is clear that X(z) has one zero at $z_1 = 0$ and one pole at $p_1 = a$.

Figure 7.12. shows the pole-zero plot.

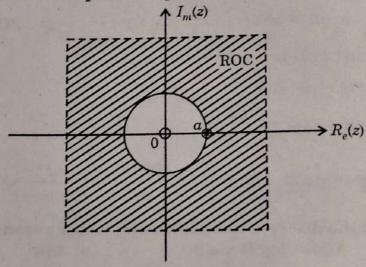


Fig. 7.12. Pole-zero plot for the causal exponential signal $x[n] = a^n \cdot u[n]$.

It may be noted that the pole at $p_1 = a$ is not included in the region of the convergence (ROC) since the z-transform does not converge at a pole.

Example 7.42. Find the z-transform of the following sequences:

(i)
$$x_1(n) = \{1, 2, 3, 4, 5, 0, 7\}$$

(ii)
$$x_2(n) = \{1, 2, 3, 4, 5, 0, 7\}$$

Solution: (i) Let us consider the first sequence $x_1[n]$, Its samles are

$$x_1(0) = 1$$
 $x_1(4) = 5$
 $x_1(1) = 2$ $x_1(5) = 0$
 $x_1(2) = 3$ $x_1(6) = 7$
 $x_1(3) = 4$

The z-transform of this sequence may be obtained with the help of the expression

$$X_1(z) = \sum_{n=-\infty}^{\infty} x_1(n) z^{-n}$$

Here, $x_1[n]$ has the values from n = 0 to n = 6. Thus, the above equation becomes

$$X_1(z) = \sum_{n=0}^{6} x_1(n) z^{-n}$$

Substituting the values of
$$x_1(n)$$
 and expanding, we get
$$X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 5z^{-4} + 0, z^{-6} + 7z^{-6}$$
 or
$$X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 5z^{-4} + 7z^{-6}$$
 or
$$X_1(z) = 1 + \frac{2}{z} + \frac{3}{z^2} + \frac{4}{z^4} + \frac{7}{z^6}$$
 Now, let us determine a second of $X_1(z) = 1 + \frac{2}{z} + \frac{3}{z^2} + \frac{4}{z^4} + \frac{7}{z^6}$

Now, let us determine the region of convergence for this z-transform. $X_1(z)$ has finite values except at z = 0. At z = 0, $X_1(z)$ becomes infinite. Hence $X_1(z)$ is convergent for all values of z except at z=0.

Therefore, the region of convergence (ROC) will be:

ROC: Entire z-plance except z = 0.

(ii) Let us consider the second sequence $x_2[n]$. Its samples are

$$x_{2}(-3) = 1$$

 $x_{2}(-2) = 2$
 $x_{2}(-1) = 3$
 $x_{2}(0) = 4$
 $x_{2}(1) = 5$
 $x_{2}(2) = 0$
 $x_{2}(3) = 7$

Here, $x_2(n)$ has the values from n = -3 to n = 3.

Thus, z-transform will be expressed as

$$X_2(z) = \sum_{n=-3}^{3} x_2(n) z^{-n}$$

Substituting the values of $x_2[n]$ in above equation and expanding, we get

$$X_2(z) = 1$$
. $z^3 + 2z^2 + 3z^1 + 4z^0 + 5z^{-1} + 0.z^{-2} + 7z^{-3}$ or $X_2(z) = z^3 + 2z^2 + 3z + 4 + 5z^{-1} + 7z^{-3}$ or $X_2(z) = z^3 + 2z^2 + 3z + 4 + \frac{5}{z} + \frac{7}{z^3}$

Now let us determine the region of convergence (ROC) for this z-transform. Here, $X_2(z)$ is infinite for z=0 and $z=\infty$. The z-transform expressed by above equation is not convergent at z = 0 and $z = \infty$. Hence the region of convergence will be :

ROC: Entire z-plane except z = 0 and $z = \infty$.

Example 7.43. Find the z-transform and ROC of the following sequence:

$$x(n) = \left(-\frac{1}{3}\right)^n \cdot u(n) - \left(\frac{1}{2}\right)^n \cdot u(-n-1)$$

Solution: The z-transform of x[n] will be given as

$$Z\{x(n)\} = X(z) = Z\left\{\left(-\frac{1}{3}\right)^n \cdot u(n) - \left(\frac{1}{2}\right)^n \cdot u(-n-1)\right\}$$

since z-transform satisfies linearity property, therefore we may write above equation as

$$X(z) = Z\left\{\left(-\frac{1}{3}\right)^n \cdot u(n)\right\} + Z\left\{-\left(\frac{1}{2}\right)^n \cdot u(-n-1)\right\}$$
 (i)

Here let us use the standard results derived earlier i.e.,

$$Z\{\alpha^n, u(n)\} = \frac{1}{1-\alpha z^{-1}}, ROC: |z| > \frac{1}{3}$$

Therefore,
$$Z\left\{\left(-\frac{1}{3}\right)^{n}.u\left(n\right)\right\} = \frac{1}{1+\frac{1}{3}z^{-1}}, ROC:|z| > \frac{1}{3}$$
 ...(ii)

Also,
$$Z \{-a^n, u (-n-1)\} = \frac{1}{1-az^{-1}} ROC: |z| < |a|$$

Therefore,
$$Z\left\{-\left(\frac{1}{2}\right)^n.u\left(-n-1\right)\right\} = \frac{1}{1-az^{-1}}ROC:|z| < \frac{1}{2}$$
 (iii)

Now, using equations (ii) & (iii), the equation (i) may be written as

$$X(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}}$$
; ROC: $|z| > \frac{1}{3}$ and $|z| < \frac{1}{2}$

The ROC of $z > \frac{1}{3}$ and $|z| < \frac{1}{2}$ may

also be written as $\frac{1}{3} < |z| < \frac{1}{2}$. Hence, ROC is the region between the circles of radius of $\frac{1}{3}$ and $\frac{1}{2}$. Figure 7.14 shows this ROC

Therefore, the ROC is the intersection or simply the overlap of ROC of individual functions. It is annular region

for $\frac{1}{3} < |z| < \frac{1}{2}$ looking like a disk. Ans.

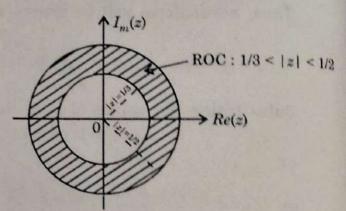


Fig. 7.13. ROC of the function of the example 7.44.

Example 7.45. Solve the difference equation of a causal discrete-time LTI system which is expressed as under:

$$y(n) + 3y(n) = x(n)$$

Assume that the system is initially relaxed.

Solution: We know that the transfer function H(z) can be determined by taking unilateral z-transform of both sides of equation (i)

$$y(n) + 3 y(n - 1) = x(n)$$

$$Z [y(n) + 3y(n - 1)] = Z[x(n)]$$

$$Y(z) + 3z^{-1} Y(z) = X(z)$$
...(ii)

The system is initially relaxed, i,e., all the initial conditions are zero for this system,

Using equation (ii), we get

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{(1+3z^{-1})}$$
 ...(iii)

This is the transfer function of the causal LTI system described by equation

that input is given by x(n) = u(n)

Taking z-transform of equation (iv), we obtain ...(iv)

$$X(z) = U(z) = \frac{1}{1-z^{-1}}$$
know that
$$\dots(v)$$

Further, we know that

$$Y(z) = H(z) X(z) = \frac{1}{(1+3z^{-1})(1-z^{-1})}$$

Now, Using partial fraction expression, we get

$$Y(z) = \frac{1}{(1+3z^{-1})(1-z^{-1})} = \frac{\alpha_1}{1+3z^{-1}} + \frac{\alpha_2}{(1-z^{-1})}$$

$$Y(z) = \frac{3/4}{(1+3z^{-1})} + \frac{1/4}{(1-z^{-1})} \qquad \dots (vi)$$

Taking inverse unilateral z-transform of both sides of equation (iv), we obtain

$$Z^{-1}[Y(z)] = Z^{-1} \left[\frac{3/4}{1+3z^{-1}} + \frac{1/4}{1-z^{-1}} \right] = \frac{3}{4} Z^{-1} \left[\frac{1}{1+3z^{-1}} \right] + \frac{1}{4} Z^{-1} \left[\frac{1}{1-z^{-1}} \right]$$
or
$$y(n) = \frac{3}{4} (-3)^n u(n) + \frac{1}{4} (1)^n u(n)$$

$$y(n) = \left[\frac{1}{4} + \frac{3}{4} (-3)^n \right] u(n)$$

This is the required solution for given difference equation. Ans.

Example 7.45. Find the step response of a system which is expressed by y(n) = Ay(n-1) + x(n), -1 < A < 1

When the initial condition is y(-1) = 1. Solution: By taking one-sided z-transform of both sides of the given difference equation, we get

$$Y(z) = A[z^{-1} Y(z) + y(-1)] + X(z) = A[z^{-1} Y(z) + 1] + X(z)$$
or
$$Y(z) [1 - Az^{-1}] = A + X(z)$$
...(i)
However for step response $x(n) = u(n)$

However, for step response, x(n) = u(n)

Then, we have
$$X(z) = Z[u(n)] = \frac{1}{1-z^{-1}}$$
 ...(ii)

Now, substituting equation (ii) in equation (i), we obtain

$$Y(z) [1 - Az^{-1}] = A + \frac{1}{1 - z^{-1}}$$

$$Y(z) = \frac{A}{1 - Az^{-1}} + \frac{1}{(1 - z^{-1})(1 - Az^{-1})} \qquad \dots(iii)$$

Using partial fraction expansion, we get

or

$$Y(z) = \frac{A}{1 - Az^{-1}} + \frac{B_1}{1 - z^{-1}} + \frac{B_2}{1 - Az^{-1}} \qquad \dots (iv)$$

or
$$z = 1$$

$$1 - z^{-1} = 0$$

$$z = 1$$

$$1 - A^{z-1} = 0$$

$$B_{1} = \frac{1}{1 - Az^{-1}} = \frac{1}{1 - A}$$

$$B_{2} = \frac{1}{1 - z^{-1}} = \frac{A}{1 - A} = -\frac{A}{A - 1} = -\frac{A}{1 - A}$$

or $z^{-1} = 1/A$ Substituting the value of B_1 and B_2 in equation (iv), we get

$$y(z) = \frac{A}{1 - Az^{-1}} + \frac{\left(\frac{1}{1 - A}\right)}{1 - z^{-1}} + \frac{\left(\frac{-A}{1 - A}\right)}{1 - Az^{-1}} \qquad \dots (v)$$

Taking the inverse z-transform of equation (v), we get

$$y(n) = A^{n+1}u(n) + \frac{1}{(1-A)}u(n) + \frac{-1}{(1-A)}A^{n+1}u(n)$$
or
$$y(n) = A^{n+1}u(n) + \left[\frac{1-A^{n+1}}{1-A}\right]u(n)$$

or $y(n) = \frac{1}{1-A}[1-A^{n+2}]u(n)$ Ans.

Example 7.46. Solve the following difference equation by using z-transform method

$$x(n+2) + 3x(n+1) + 2x(n) = 0$$

Given that initial conditions are x(0) = 0 and x(1) = 1.

Solution: Given difference equation is

$$x(n+2) + 3x(n+1) + 2x(n) = 0$$
 ...(i)

Taking the z-transform of both sides of the above equation, we obtain

$$[z^{2}X(z) - z^{2}x(0) - zx(1)] + 3[zX(z) - z(0)] + 2[X(z)] = 0$$
or
$$[z^{2}X(z) - z^{2}(0) - z(1)] + 3[zX(z) - z(0)] + 2[X(z)] = 0$$
or
$$[z^{2}X(z) - z] + 3zX(z) + 2X(z) = 0$$
or
$$X(z) [z^{2} + 3z + 2] = z$$

or
$$X(z) = \frac{z}{z^2 + 3z + 2}$$
 ...(ii)

Let us now take the inverse z-transform of above z-transform by partial fraction expansion method, i.e.,

$$X(z) = \frac{z}{z^2 + 3z + 2} = \left\{ \frac{A}{(z+1)} + \frac{B}{(z+2)} \right\}$$
or
$$X(z) = \frac{z}{z+1} - \frac{z}{z+2} = \frac{1}{1+z^{-1}} - \frac{1}{1+2z^{-1}} \qquad \dots (iii)$$

or
$$X(z) = \frac{1}{1+z^{-1}} - \frac{1}{1+2z^{-1}}$$
 ...(iv)

Taking the inverse z-transform of equation (iv), we obtain

$$x(n) = Z^{-1} \left[\frac{1}{1+z^{-1}} \right] - Z^{-1} \left[\frac{1}{1+2z^{-1}} \right]$$

$$x(n) = (-1)^n u(n) - (-2)^n u(n) \text{ Ans.}$$
The response is the response of the property of the property

Example 7.47. Determine the response of the following system: $x(n+2) - 3x(n+1) + 2x(n) = \delta(n)$

Assume that all the initial conditions are zero.

solution: Given system is

$$x(n+2) - 3x(n+1) + 2x(n) = \delta(n)$$

$$ded z \cdot transform = \delta(n)$$
...(i)

Taking one-sided z-transform of both sides of above equation, we obtain

or
$$z^{2}X(z) - 3 z^{1}X(z) + 2 X(z) = 1$$

$$X(z) [z^{2} - 3z + 2] = 1$$
or
$$X(z) = \frac{1}{z^{2} - 3z + 2} = \frac{1}{(z - 2)(z - 1)}$$

$$= \frac{A}{z - 2} + \frac{B}{z - 1} = \frac{1}{z - 2} - \frac{1}{z - 1}$$
 ...(iii)

(By partial fraction expansion)

...(ii)

Taking inverse z-transform of both sides of equation (ii), we have

$$x(n) = Z^{-1} \left[\frac{1}{z-2} \right] - Z^{-1} \left[\frac{1}{z-1} \right] = Z^{-1} \left[\frac{z^{-1}}{1-2z^{-1}} \right] - Z^{-1} \left[\frac{z^{-1}}{1-z^{-1}} \right]$$

$$x(n) = (2)^{n-1} - (1)^{n-1}$$
or
$$x(n) = -1 - (2)^{n-1}$$
Ans.

Example 7.48. Determine the z-transform of the following discrete-time signals. Also find the ROC for each of the following cases:

(i)
$$x(n) = 2^n u(n) + 3\left(\frac{1}{2}\right)^n u(n)$$
 (ii) $x(n) = 3\left(-\frac{1}{2}\right)^n u(n) - 2(3)^n u(-n-1)$

Solution: (i) Given signal is

$$x(n) = 2^n u(n) + 3\left(\frac{1}{2}\right)^n u(n)$$

We know that Two-sided (bilateral) z-transform of x(n) is defined as

$$X(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n) z^{-n} = \sum_{n=-\infty}^{\infty} \left[2^n u(n) + 3 \left(\frac{1}{2} \right)^n u(n) \right] z^{-n}$$

or
$$X(z) = \sum_{n=-\infty}^{\infty} 2^n u(n) z^{-n} + 3 \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n u(n) z^{-n}$$

or
$$X(z) = \sum_{n=0}^{\infty} 2^n (1) z^{-n} + 3 \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n (1) z^{-n}$$
 [Since $u(n) = \begin{cases} 1, & \text{for } n \ge 0 \\ 0, & \text{for } n < 0 \end{cases}$]

or
$$X(z) = \sum_{n=0}^{\infty} (2z^{-1})^n + 3\sum_{n=0}^{\infty} (\frac{1}{2}z^{-1})^n$$

or
$$X(s) = \frac{1}{\left(1 - 2s^{-1}\right)} + 3\frac{1}{\left(1 - \frac{1}{2}s^{-1}\right)}$$

I-part II-part

or
$$X(z) = \frac{\left(1 - \frac{1}{2}z^{-1}\right) + 3(1 - 2z^{-1})}{(1 - 2z^{-1})\left(1 - \frac{1}{2}z^{-1}\right)} = \frac{4 - 13z^{-1}}{(1 - 2z^{-1})\left(1 - \frac{1}{2}z^{-1}\right)} \qquad \dots (i)$$

Now, ROC of I-part : $|1 - 2z^{-1}| > 0$

or
$$|2z^{-1}| < 1$$
 or $|z^{-1}| < \frac{1}{2}$

or
$$\left|\frac{1}{z}\right| < \frac{1}{2}$$
 or $|z| > 2$...(ii)

ROC of II-part:
$$\left| 1 - \frac{1}{2}z^{-1} \right| > 0$$
 or $\left| \frac{1}{2}z^{-1} \right| < 1$

or
$$|z^{-1}| < 2$$
 or $|\frac{1}{z}| < 2$ or $|z| > \frac{1}{2}$...(iii)

Therefore, ROC of X(z), will be

ROC:
$$\{|z| > 2\} \cap \left\{ |z| > \frac{1}{2} \right\}$$

Thus, we have

$$ROC: \{|z| > 2\}$$

(ii) Given signal is
$$x(n) = 3\left(-\frac{1}{2}\right)^n u(n) - 2(3)^n u(-n-1)$$

We know that Two-sided z-transform of x(n) is given by

$$X(z) = Z[x(n)] = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$

$$= \sum_{n = -\infty}^{\infty} \left[3 \left(-\frac{1}{2} \right)^n u(n) - 2(3)^n u(-n-1) \right] z^{-n}$$
or
$$X(z) = 3 \sum_{n = -\infty}^{\infty} \left(-\frac{1}{2} \right)^n u(n) z^{-n} - 2 \sum_{n = -\infty}^{\infty} (3)^n u(-n-1) z^{-n}$$
or
$$X(z) = 3 \sum_{n = -\infty}^{\infty} \left(-\frac{1}{2} \right)^n (1) z^{-n} - 2 \sum_{n = -\infty}^{-1} (3)^n (1) z^{-n}$$

Since
$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
 and $u(-n-1) = \begin{cases} 1, & (-n-1) \ge 0 \to n \le -1 \\ 0, & (-n-1) < 0 \to n > -1 \end{cases}$

or
$$X(z) = 3 \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n z^{-n} - 2 \sum_{n=-\infty}^{-1} (3)^n z^{-n}$$
or
$$X(z) = 3 \sum_{n=0}^{\infty} \left(-\frac{1}{2} z^{-1} \right)^n - 2 \sum_{n=-\infty}^{-1} (3z^{-1})^n$$

$$= 3 \sum_{n=0}^{\infty} \left(-\frac{1}{2} z^{-1} \right)^n - 2 \sum_{n=1}^{\infty} (3z^{-1})^{-n}$$
or
$$X(z) = 3 \frac{1}{1 - \left(-\frac{1}{2} z^{-1} \right)^n} - 2 \frac{\left(3z^{-1} \right)^{-1}}{1 - \left(2z^{-1} z^{-1} \right)^n}$$

or
$$X(z) = 3 - \frac{1}{1 - \left(-\frac{1}{2}z^{-1}\right)^n} - 2\frac{\left(3z^{-1}\right)^{-1}}{1 - \left(3z^{-1}\right)^{-1}}$$

$$= \frac{3}{1 + \frac{1}{2}z^{-1}} - \frac{2/3z^{-1}}{1 - \frac{1}{3z^{-1}}} = \frac{3}{1 + \frac{1}{2}z^{-1}} - \frac{2}{3z^{-1} - 1}$$
or
$$X(z) = \frac{3}{1 + \frac{1}{2}z^{-1}} - \frac{2}{1 - 3z^{-1}}$$
I-part II-part ...(iv)

or
$$X(z) = \frac{2(1-3z^{-1}) + 2\left(1 + \frac{1}{2}z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)(1-3z^{-1})} = \frac{4-5z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)(1-3z^{-1})}$$

Now, ROC of I-part : $\left| 1 + \frac{1}{2} z^{-1} \right| < 0$ or $\left| \frac{1}{2} z^{-1} \right| < 1$

or
$$z^{-1}|<2$$
 or $z|>\frac{1}{2}$...(v)

Also, ROC of II-part:
$$|1-3z^{-1}| > 0$$
 or $|3z^{-1}| > 1$ or $z | < 3$...(vi)

Therefore, ROC of X(z) ROC: $\{|z| > \frac{1}{2}\} \cap \{|z| < 3\} = \frac{1}{2} < |z| < 3$ Ans.

Example 7.49. Two discrete-time signals are given as under:

$$x_1(n) = \left(\frac{1}{3}\right)^n u(n)$$
 and $x_2(n) = \left(\frac{1}{5}\right)u(n)$

Convolution of $x_1(n)$ and $x_2(n)$ is given by $x(n) = x_1(n) \otimes x_2(n)$

(i) Find X(z) using convolution property of z-transform.

(ii) Find x(n) by taking inverse z-transforms of X(z) by using partial fraction expansion method.

Solution: (a) Given that:

$$x(n) = x_1(n) \otimes x_2(n)$$

From convolution property of z-transform, we know

ation property of 2-transfer
$$x_1(n) = x_1(n) \otimes x_2(n) \xrightarrow{Z} X(z) = X_1(z) X_2(z)$$

or $X(z) = X_1(z) X_2(z)$ where $X_1(z) = Z[x_1(n)] = Z\left[\left(\frac{1}{3}\right)^n u(n)\right] = \frac{1}{1 - \frac{1}{3}z^{-1}}, ROC: |z| > \frac{1}{3}$(ii)

and
$$X_2(z) = Z[x_2(n)] = Z\left[\left(\frac{1}{5}\right)^n u(n)\right] = \frac{1}{1 - \frac{1}{5}z^{-1}}, \text{ROC}: |z| > \frac{1}{5}$$
 ...(iii)

Substituting equations (ii) and (iii) in equation (i), we obtain $X(z) = X_1(z) X_2(z)$

$$=\frac{1}{\left(1-\frac{1}{3}z^{-1}\right)}\frac{1}{\left(1-\frac{1}{5}z^{-1}\right)}=\frac{1}{\left(1-\frac{1}{3}z^{-1}\right)}\frac{1}{\left(1-\frac{1}{5}z^{-1}\right)} \dots (i_{0})$$

ROC:
$$\left\{ |z| > \frac{1}{3} \right\} \cap \left\{ |z| > \frac{1}{5} \right\} = |z| > \frac{1}{3}$$

(ii) Using equation (iv), we have

$$X(z) = \frac{z^2}{\left(z - \frac{1}{3}\right)\left(z - \frac{1}{5}\right)}$$

or
$$\frac{X(z)}{z} = \frac{z}{\left(z - \frac{1}{3}\right)\left(z - \frac{1}{5}\right)} = \frac{A_1}{\left(z - \frac{1}{3}\right)} + \frac{A_2}{\left(z - \frac{1}{5}\right)}$$

(using partial fraction expansion

or
$$\frac{X(z)}{z} = \frac{5/2}{\left(z - \frac{1}{3}\right)} + \frac{-3/2}{\left(z - \frac{1}{5}\right)} = \frac{5/2z}{\left(z - \frac{1}{3}\right)} - \frac{3/2z}{\left(z - \frac{1}{5}\right)}$$
$$\frac{X(z)}{z} = \frac{5/2}{\left(1 - \frac{1}{3}z^{-1}\right)} - \frac{3/2}{\left(1 - \frac{1}{5}z^{-1}\right)}$$

Note that since both the poles are surrounded by ROC, therefore, they gionly positive time sequence terms.

Now, taking inverse z-transform of both sides of equation (iii), we have

$$x(n) = Z^{-1} [X(z)] = Z^{-1} \left[\frac{5/2}{\left(1 - \frac{1}{3}z^{-1}\right)} - \frac{3/2}{\left(1 - \frac{1}{5}z^{-1}\right)} \right]$$

or
$$x(n) = \frac{5}{2} \left(\frac{1}{3}\right)^n u(n) - \frac{3}{2} \left(\frac{1}{5}\right)^n u(n)$$
 Ans.

Example 7.50. Find the z-transform of the following sequence:

$$x(n) = \begin{cases} 2^n, & n < 0 \\ (1/2)^n, & n = 0, 2, 4 \\ (1/3)^n, & n = 1, 3, 5 \end{cases}$$

Solution. The given sequence is The z-transform $\Box\Box$ 489

$$x(n) = \begin{cases} 2^{n}, & n < 0 \\ (1/2)^{n}, & n = 0, 2, 4 \\ (1/3)^{n}, & n = 1, 3, 5 \end{cases}$$
...(i)

We know that z-transform of x(n) is given by

$$X(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(ii)

Substituting equation (i) in equation (ii), we obtain

$$X(z) = \sum_{n=-\infty}^{-1} 2^{n} z^{-n} + \sum_{\substack{n=0\\(n-\text{even})}}^{\infty} \left(\frac{1}{2}\right)^{n} z^{-n} + \sum_{\substack{n=0\\(n-\text{odd})}}^{\infty} \left(\frac{1}{3}\right)^{n} z^{-n}$$

or
$$X(z) = \sum_{m=1}^{\infty} 2^{-m} z^m + \sum_{p=0}^{\infty} \left(\frac{1}{2}\right)^{2p} z^{-2p} + \sum_{q=0}^{\infty} \left(\frac{1}{3}\right)^{2q-1} z^{-(2q+1)}$$

where
$$m = -n$$
, $p = \frac{n}{2}$ and $q = \left(\frac{n-1}{2}\right)$

Thus, we have

$$X(z) = X_1(z) + X_2(z) + X_3(z)$$

or
$$X(z) = \frac{z/2}{\left(1 - \frac{z}{2}\right)} + \frac{z^2}{\left(z^2 - \frac{1}{4}\right)} + \frac{z/3}{\left(z^2 - \frac{1}{9}\right)}$$
 ...(iii)

Now, ROC for $X_1(z) : |z| < 2$

ROC for
$$X_2(z) : |z| > \frac{1}{2}$$

ROC for
$$X_3(z) : |z| > \frac{1}{3}$$

Therefore, ROC for
$$X(z)$$
: $\{|z| < 2\} \cap \{|z| > \frac{1}{2}\} \cap \{|z| > \frac{1}{3}\}$
= $\frac{1}{2} < |z| < 2$ Ans.

Example 7.51. Determine the convolution x(n) of the following two signals $x_1(n) = \{4, -2, 1\}$

$$x_2(n) = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{elsewhere} \end{cases}$$

Solution: Here, we have

$$X_1(z) = Z[x_1(n)] = \sum_{n=-\infty}^{\infty} x_1(n) z^{-n}$$