* Design methodology for sequential logic
-- identify distinct states
-- create state transition diagram
-- choose state encoding
-- write combinational Verilog for next-state logic
-- write combinational Verilog for output signals

* Lots of examples

6.111 Fall 2017 Lecture 6 1

Scanned with CamScanner

Finite State Machines

e Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized "states” of operation

» At each clock edge, combinational logic computes ou7puts and
next state as a function of /nputsand present state

inputs) outputs
+ +
present next
state state

CLK

6.111 Fall 2017 Lecture 6 2

Scanned with CamScanner

Two Types of FSMs

Moore and Mealy FSMs : different output generation

* Moore FSM:
inputs outputs
X0 X, Y = Ti(S)
present state S
* Mealy FSM:
direct combinational path! outputs
. Yk = fk(‘st XO"'Xn)
inputs
Ks

6.111 Fall 2017 Lecture 6 3

Scanned with CamScanner

Design Example: Level-to-Pulse

A level-to-pulse converter produces a single-
cycle pulse each time its input goes high.

e Tt's a synchronous rising-edge detector.

e Sample uses:

— Buttons and switches pressed by humans for
arbitrary periods of time

— Single-cycle enable signals for counters

- R Level to
e ' 1| —L Pulse P |—
Converter
Whenever input L goes |_
from low to high... LK

6.111 Fall 2017 Lecture 6

...output P produces a
single pulse, one clock
period wide.

Scanned with CamScanner

Step 1: State Transition Diagram

* Block diagram of desired system:

Synchronizer Edge Detector
; Level to
unsynchronized
eorinli D Q D Q L Puse Pp—
5 b o FSM
CLK I_ r I_

- State transition diagram is a useful FSM representation and
design aid:

00

Low input,
Waiting for rise
P=0

01
Edge Detected!
P=1

High input, L=1
Waiting for fall -

6.111 Fall 2017 Lecture 6 5

Scanned with CamScanner

6.111 Fall 2017

Valid State Transition Diagrams

L=1 L=1

00
Low input,
Waiting for rise
=)

11
High input,
Waiting for fall
P=0

01
Edge Detected!
P=1

L=0

* Arcs leaving a state are mutually exclusive, i.e., for any
combination input values there's at most one applicable arc

* Arcs leaving a state are collectively exhaustive, i.e., for any
combination of input values there's at least one applicable arc

* So for each state: for any combination of input values there's
exactly one applicable arc

» Often a starting state is specified
* Each state specifies values for all outputs (Moore)

Lecture 6 6

Scanned with CamScanner

Choosing State Representation

Choice #1: binary encoding

For N states, use ceil(log,N) bits to encode the state with each
state represented by a unique combination of the bits.
Tradeoffs: most efficient use of state registers, but requires
more complicated combinational logic to detect when in a
particular state.

Choice #2: "one-hot" encoding
For N states, use N bits to encode the state where the bit
corresponding to the current state is 1, all the others O.

Tradeoffs: more state registers, but often much less
combinational logic since state decoding is trivial.

6.111 Fall 2017 Lecture 6

Scanned with CamScanner

Step 2: Logic Derivation

Transition diagram is readily converted to a

state transition table (just a truth table) / i , p
1 20 1" 20
. 0 o|lo]o o] O
O 0|10 1|0
Low(?rsfz;uf Edge DC‘),' !recfe dl High1i1r1pu'r, (S— 0 1 0 0 0 1
ti iti |
ai l;\g 8‘ risg P-1 a'r;g=foor' fa 0 1 1 1 1 1
1 1/0]0 O] O
1 1|11 1|0
+ Combinational logic may be derived using Karnaugh maps
55, forS;:
LN\ 00 01 11 10
0|0:0:0:X
1 1:1
2 +X 8eg|ster8 f or P
315 for Sy CLK = o 1
L\ 0001 11 10 O 0 X
911917005 X ° = 550 1[10
111:11:1:X
6.111 Fall 2017 Lecture 6 8

Scanned with CamScanner

Moore Level-to-Pulse Converter

next

D, .
n Registers
CLK =>

W = Fi(S)

present state S

Moore FSM circuit implementation of level-to-pulse converter:

L So’ > Q So >
kP Q :
- HNE
Q
_—J 51+ I- — 51
> Q

6.111 Fall 2017 Lecture 6

Scanned with CamScanner

Design of a Mealy Level-to-Pulse

direct combinational path!

5 . J
D f:
|

CLK=>
S

» Since outputs are determined by state andinputs, Mealy FSMs may
need fewer states than Moore FSM implementations

Output transitions immediately.

State transitions at the clock
edge.

6.111 Fall 2017 Lecture 6 10

Scanned with CamScanner

Mealy Level-to-Pulse Converter

sy 2::': Out
State -
S L S P
0 0 0 0
0 1 1 1
1 1 1 0
1 0 0 0

Mealy FSM circuit implementation of level-to-pulse converter:

D=

0

D
CLK =——p>

Ol

5
FSM's state simply remembers the previous value of L

Circuit benefits from the Mealy FSM's implicit single-cycle
assertion of outputs during state transitions

Scanned with CamScanner

Moore/Mealy Trade-Offs

* How are they different?
— Moore: outputs = f(state) only
— Mealy outputs = f(state and input)

— Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P
L] L _{
P PLLIY B
Clock _/__1 Clock _/__, L
Statel . | : State Q_
0]

Compared to a Moore FSM, a Mealy FSM might...

- Be more difficult to conceptualize and design
- Have fewer states

6.111 Fall 2017 Lecture 6

Scanned with CamScanner

Example: Intersection Traffic Lights

 Design a controller for the traffic lights at the intersection of
two streets - two sets of traffic lights, one for each of the
streets.

e Step 1: Draw starting state transition diagram. Just handle the
usual green-yellow-red cycle for both streets. How many states?
Well, how many different combinations of the two sets of lights
are needed?

e Step 2: add support for a walk button and walk lights to your
state transition diagram.

e Step 3: add support for a traffic sensor for each of the streets
- when the sensor detects traffic the green cycle for that street
is extended.

Example to be worked collaboratively on the board...

6.111 Fall 2017 Lecture 6 13

Scanned with CamScanner

FSM Example

GOAL:
Build an electronic combination lock with a reset
button, two number buttons (O and 1), and an unlock
output. The combination should be 01011,

RESET
“0” UNLOCK
e
STEPS:

1. Design lock FSM (block diagram, state transitions)
2. Write Verilog module(s) for FSM

6.111 Fall 2017 Lecture 6 14

Scanned with CamScanner

Step 1A: Block Diagram

lock

Clock
generator

6.111 Fall 2017

Button

reset

:>fsm_pbck

Enter

Button

bO_in

Button

bl _in

D

LED
DISPLAY

Lecture 6

15

Scanned with CamScanner

Step 1B: State transition diagram

\\OII \\Olll
Unlock = 0 Unlock = O Unlock =0

*01011" *0101" "010"
Unlock = 1 Unlock = 0 Unlock = 0

6 states — 3 bits

6.111 Fall 2017 Lecture 6 16

Scanned with CamScanner

Step 2: Write Verilog

module lock(input clk,reset_in,bO_in,bl_1in,
output out);

// synchronize push buttons, convert to pulses

// implement state transition diagram
reg [2:0] state,next_state;
always @(*) begin
// combinational Togic!
next_state = 777;
end
always @(posedge clk) state <= next_state;

// generate output
assign out = ??7;

// debugging?
endmodule

6.111 Fall 2017 Lecture 6 17

Scanned with CamScanner

Step 2A: Synchronize buttons

// button
// push button synchronizer and level-to-pulse converter
// OUT goes high for one cycle of CLK whenever IN makes a

// Tow-to-high transition.

module button(

);

input clk,in,
output out

reg rl,r2,r3;
always @(posedge
begin
rl <= 1in; #4
r2 <= rl; P
r3 <= r2; //
end

// rising edge =
assign out = ~r3

endmodule

6.111 Fall 2017

clk)

first reg in synchronizer

/

in—D Q D

r2

_I_Df out
r3
D Q

clk r: r>

Y
K synchronizer

—
state J

second reg in synchronizer, output is in sync!
remembers previous state of button

old value is 0, new value is 1

& r2;

Lecture 6

Scanned with CamScanner

6.111 Fall 2017

Step 2B: state transition diagram

parameter S
parameter S
parameter S
parameter S
parameter S
parameter S
reg [2:0] state, next_state;
always @(*) begin

// implement state transition diagram

if (reset) next_state = S_RESET;

else case (state)

S_RESET: next_state = b0 ? S_0O : bl
S_0: next_state = b0 ? S_O : bl
S_01: next_state = b0 ? S_010 : bl
S_010: next_state = b0 ? S_0O : bl
S_0101: next_state = b0 ? S_010 : bl
S_01011: next_state = b0 ? S_O : bl
default: next_state = S_RESET;
endcase

end

always @(posedge clk) state <= next_state;

Lecture 6

N N N N N N

Unlock = 1

S_RESET :

S_01

S_0101

Scanned with CamScanner

o

1
01"

nlock = 0
0

state;

: state;
S_RESET :
: state;
S_01011 :
S_RESET :
// handle unused s

state;

state;
state;
tates

Step 2C: generate output

// it’s a Moore machine! Output only depends on current state

assign out = (state == S_01011);

Step 2D: debugging?

// hmmm. What would be useful to know? Current state?
// hex_display on labkit shows 16 four bit values

assign hex_display = {60’b0, 1'b0O, state[2:0]};

6.111 Fall 2017 Lecture 6 20

Scanned with CamScanner

Step 2: final Verilog implementation

//;;dule lock(input clk,reset_in,b0_in,b1_in, \\\\
output out, output [3:0] hex_display);

wire reset, b0, b1; // synchronize push buttons, convert to pulses
button b_reset(clk,reset_in,reset);

button b_0(clk,b0_in,b0);

button b_1(clk,b1_in,b1);

parameter S_RESET = 0; parameter S_0 = 1; // state assignments
parameter S_01 = 2; parameter S_010 = 3;
parameter S_0101 = 4; parameter S_01011 = 5;
reg [2:0] state,next_state;

always @(*) begin // implement state transition diagram

if (reset) next_state = S_RESET;

else case (state)
S_RESET: next_state = b0 ? S_0 : b1 ? S_RESET : state;
S 0: next_state = b0 ? S_0 : b1 ? S_01 . state;
S_01: next_state = b0 ? S_010 : b1 ? S_RESET : state;
S_010: next_state = b0 ? S_0 : b1 ? S_0101 : state;
S_0101: next_state = b0 ? S_010 : b1 ? S_01011 : state;
S_01011: next_state = b0 ? S_0 : b1 ? S_RESET : state;
default: next_state = S_RESET; // handle unused states

endcase

end

always @ (posedge clk) state <= next_state;

assign out = (state == S_01011); // assign output: Moore machine
assign hex_display = {1'b0,state}; // debugging
endmodule
6.111 Fall 2017 Lecture 6 21

Scanned with CamScanner

Real FSM Security System

6.111 Fall 2017 Lecture 6 22

Scanned with CamScanner

The 6.111 Vending Machine

e Lab assistants demand a hew soda
machine for the 6.111 lab. You
design the FSM conftroller.

* All selections are $0.30.

e The machine makes change.
(Dimes and nickels only.)
e Inputs: limit 1 per clock
— Q - quarter inserted
= D - dime inserted
— N - nickel inserted
e Outputs: limit 1 per clock
— DC - dispense can
— DD - dispense dime
— DN - dispense nickel

6.111 Fall 2017 Lecture 6 23

Scanned with CamScanner

What States are in the System?

A starting (idle) state:

A state for eac! possible amount of money captured:

e What's the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

» States to dispense change (one per coin dispensed):

6.111 Fall 2017 Lecture 6 24

Scanned with CamScanner

A Moore Vender

Here’s a first cut at the
state transition
diagram.

See a better way?
So do we.
Don’t go away...

6.111 Fall 2017 Lecture 6 25

Scanned with CamScanner

State Reduction

Duplicate states have:
= The same outputs, and
m The same transitions D=1

There are two duplicates
in our original diagram. D=1

D=1

D=1
D=1

D=1
D=1

D=1
D=1
D=1

17 states 15 states
5 state bits 4 state bits

6.111 Fall 2017 Lecture 6 26

Scanned with CamScanner

Verilog for the Moore Vender

module mooreVender (
input N, D, Q, clk, reset,

Ay Ay - output DC, DN, DD,
=) Comb. —'n_yn State Q output reg [3:0] state);
Logic CLK»Reglster FEe BELE
1 n . .
States defined with parameter keyword
. . parameter IDLE = 0;
FSMs are easy in Verilog. parameter GOT_Sc = 1;
parameter GOT_10c = 2;
H H - parameter GOT_15c = 3;
Simply write one of each: B eter coree _ 4]
parameter GOT_25c = 5;
o 51.01-2 r.egis-rer. parameter GOT_30c = 6;
. parameter GOT_35c = 7;
(sequential always block) parameter GOT_40c = 8;
parameter GOT_45c = 9;
[Nex"‘-s'ra're parameter GOT 50c = 10;
. . o parameter RETURN 20c = 11;
combinational |OglC parameter RETURN 15c = 12;
H parameter RETURN _10c = 13;
(comb. always block with case) ot FETURN =a = dic
= Output combinational State register defined with sequential
logic block always block
(comb. always block or assign
always @ (posedge clk or negedge reset)
StafemenTS) if (!reset) state <= IDLE;
else state <= next;
6.111 Fall 2017 Lecture 6 27

Scanned with CamScanner

Verilog for the Moore Vender

Next-state logic within a
combinational always block

always @ (state or N or D or Q) begin
case (state)
IDLE: if (Q) next = GOT_25c;
else if (D) next = GOT_10c;
else if (N) next = GOT 5c;
else next = IDLE;
GOT_5c: if (Q) next = GOT 30c;

Q)
else if (D) next = GOT_15c;
else if (N) next = GOT_10c;
else next = GOT_5c;

GOT_10c: if (Q) next = GOT_35c;
else if (D) next = GOT_20c;
else if (N) next = GOT_15c;
else next = GOT_10c;

GOT_15c: if (Q) next = GOT 40c;
else if (D) next = GOT_25c;
else if (N) next = GOT_20c;

else next = GOT_15c;

GOT_20c: if (Q) next = GOT_45c;
else if (D) next = GOT_30c;
else if (N) next = GOT_25c;

else next = GOT_20c;

6.111 Fall 2017

GOT_25c:

GOT 30c:
GOT_35c:
GOT_40c:
GOT_45c:
GOT 50c:

if (Q)

next = GOT_50c;

else if (D)
else if

next = GOT_35c;
(N) next = GOT_30c;

else next = GOT_25c;

RETURN_20c:
RETURN_15c:
RETURN_10c:
RETURN_5c:

default:
endcase

end

next =
next =
next =
next =

next

next
next
next
next
next

= IDLE;
= RETURN_5c;

= RETURN_10c;
= RETURN 15c;
= RETURN_20c;

RETURN_10c;
RETURN 5c;
IDLE;
IDLE;

IDLE;

Combinational output assignment

assign DC
assign DN
assign DD

endmodule

Lecture 6

(state
state
state

(state

(state
state

| |
nwon

]

n

n

GOT_30c || state == GOT_35c ||
GOT_40c || state == GOT 45c ||
GOT_50c¢) ;

RETURN_5c) ;

RETURN_20c || state == RETURN_15c ||
RETURN_10c) ;

28

Scanned with CamScanner

Simulation of Moore Vender

= wave - default
File Edit View Insert Format Tools Window

FEHS tRBA XX N IR RSQ QB[R ELEER

/tb_moore/clk
#) /tb_moore/reset
/tb_moore/0
L /tb_moore/D
/tb_moore/N

[S N Y € IS (S SN I S 3 S CH B

26462 ps to 993573 ps |

State

Output

Lecture 6

6.111 Fall 2017

29

Scanned with CamScanner

FSM Output Glitching

o E.SM state bits may not transition at precisely the same
ime

m Combinational logic for outputs may contain hazards
m Result: your FSM outputs may glitch!

...causing the DC
during this state ...the state registers may output to glitch
transition... transtion like this... like this!
0010 0
v v
D=1 0110 1| glitch
! v
0100 0
\
assign DC = (state == GOT 30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT 50c¢);

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent soda!

6.111 Fall 2017 Lecture 6 30

Scanned with CamScanner

Registered FSM Outputs are
Glitch-Free

D Output Q
_ Registers

inputs

present state S

= Move output generation
into the sequential
always block

= Calculate outputs based
on next state

= Delays outputs by one
clock cycle. Problematic
in some application.

6.111 Fall 2017

reg DC,DN,DD;

// Sequential always block for state assignment
always @ (posedge clk or negedge reset) begin
if (!reset) state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT_40c || next == GOT_45c ||
next == GOT_50c) ;
DN <= (next == RETURN_5c) ;
DD <= (next == RETURN_20c || next == RETURN_15c ||
next == RETURN_10c) ;
end
Lecture 6 31

Scanned with CamScanner

Where should CLK come from?

e Option 1: external crystal

— Stable, known frequency, typically 50% duty cycle
» Option 2: internal signals

— Option 2A: output of combinational logic

I >
o —
 —

* No! If inputs to logic change, output may make several
transitions before settling to final value — several rising edges,
not just one!l Hard fo design away output glitches...

— Option 2B: output of a register

e Okay, but timing of CLK2 won't line up with CLK1

I > I —
e » D Q—— CLK2
CLK1 _
3

CLK1—P>

6.111 Fall 2017 Lecture 6

2

Scanned with CamScanner

