VHDL Data Types

VHDL Data Types

« Whatis a “Data Type"?

* This is a classification objects/items/data that defines the

possible set of values which the objects/items/data belonging
to that type may assume.

 E.g. (VHDL) integer, bit, std_logic, std_logic vector

« Other languages (float, double, int , char etc)

VHDL Data Types

* Predefined Data Types
« Specified through the IEEE 1076 and IEEE 1164 standards

 The IEEE Standard 1076 defines the VHSIC Hardware
Description Language or VHDL
- Developed by Intermetrics, IBM and Texas Instruments for
United States Air Force.
- 1076-1987 was the first version
- Revised in 1993, 2000, 2002, and 2008

VHDL Data Types

VHDL Data Types

Package standard of library std (Included by default):

bit type (0, 1)
bit vectors (group of multi-bit signal — bus)

Example

- SIGNAL x: BIT;

- SIGNAL y: BIT_ VECTOR (3 DOWNTO 0);
- SIGNAL w: BIT VECTOR (0 TO 7);

Signal assignment operator <=
_ X <= |1|;

-y <="0111%

- w <="01110001"

VHDL Data Types

 Package standard of library std (Included by default):

« BOOLEAN (TRUE, FALSE)
- Example
 variable VAR1: boolean := FALSE;

 INTEGER (32 bit, -2,147,483,647 to +2,147,483,647
- Example
 SIGNAL SUM: integer range 0 to 256 :=16;

 REAL (from -1.0E38 to +1.0E38)
- Example
« constant Pi : real := 3.14159;

VHDL Data Types

 The IEEE Standard 1164

* Introduce Multivalue Logic (std_logic 1164) Packages

 The primary data type std_ulogic (standard unresolved logic)
consists of nine character literals in the following order:

-_—

w

4.

<

‘U’ — uninitialized (default value)

'X' - strong drive, unknown logic
value

‘0’ - strong drive, logic zero
1" - strong drive, logic one

'Z' - high impedance (for tri-state
logic)

6
7
8.
9

'W' - weak drive, unknown logic value
‘L' - weak drive, logic zero

'H' - weak drive, logic one

' -don't care

» std ulogic and its subtype (std_logic, std_logic vector,
std_ulogic vector) values can be categorized in terms of their
state and strength (forcing, weak and high impedance.)

» Weak strength is used for multi-driver inputs catering for

pullup/pulldown

VHDL Data Types

« std_ulogic data type possible values and corresponding strength

Data Value
U
X

I r S

State
Unitialised
Unknown

0
1
None

Unknown
0
1
Don't care

Strength
None
Forcing

Forcing
Forcing
High Impedance

Weak
Weak
Weak
None

Comment
Default value before simulation.

Represents driven signals whose
value cannot be determined as 1 or 0

Represents signals from active output
drivers

Represents output of tri-state buffer
when not enabled.

Represents signals from resistive
drivers e.g. pull-up and pull-down
resistors

Allows synthesiser to decide whether
to assign a 0 or a 1 for minimum
systhesised logic circuit.

VHDL Data Types

» std ulogic

Is an unresolved data type
Declared in package STD LOGIC 1164 of library IEEE.
All data signals are of unresolved type by default.
Unresolved data type signals cannot be driven by more
than one driver/sources. (adding multiples sources will

result in compiler error).

Helps checking that designer has not accidentally
assigned two sources to a signal.

VHDL Data Types

 Resolved Data Types
* Always declared with a resolution function (within its library).

* Resolution function defines all possible combinations of one
or more source values and the correspond resolved value
(result).

l these ‘Slgl'l-ﬂli
must be resolved

17\
/

VY

VHDL Data Types

« std logic (this is a resolved data type)
* A subtype of std_ulogic
e Declared in package STD_LOGIC_1164 of library IEEE as
subtype std logic is resolved std ulogic;
« Specified a resolution function called “resolved”

VHDL Data Types

« std_logic resolution table

w W W W X

1

W W H X

H

VHDL Data Types

« std_logic declaration examples
 SIGNAL x: STD_LOGIC;

« SIGNALY: STD _LOGIC_VECTOR (3 DOWNTO 0) :="0001"

VHDL Data Types: Arrays

* Arrays are collections of objects of the same type.

 Can be 1D (1 dimensional) of 2D (2 dimensional) arrays.
« Higher dimensional arrays are not synthesizable

01000 O[fL]{{O]]O]|0
0 01 000 1 0010 LH{O{{O]]1]0
I 1 0 0 1 LI[1{{O]]0]]1

Scalar 1D Array 1Dx1D array

2D array
(Array of vectors)

 There are no pre-defined 2D or 1Dx1D arrays; have to be
defined by designer.

VHDL Data Types: Arrays

 Defining VHDL Arrays
* First define a new data type
« Second declare a signal, variable or constant of the defined
data type.
 General Format of Array definition
TYPE type name IS ARRAY (specification) OF data_type;

SIGNAL signal_name: type name [:= initial value];

VHDL Data Types: Arrays

« Example:
TYPE row IS ARRAY (7 DOWNTO 0) OF STD LOGIC;
- Defines a row (1D array) (data type) with of seven STD_LOGIC
values with MSB on left.
TYPE matrix IS ARRAY (0 TO 3) OF row;
- Defines an 1Dx1D ARRAY (matrix) data type containing 4 row
defined in previous line.
SIGNAL x: matrix;

- Defines 1Dx1D signal of type matrix as defined in previous line

VHDL Data Types: Arrays

« Example:1Dx1D Array (of vectors) --- Alternative method
TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

« Example:2D Array Data type
TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC;

— Array construction is not based on vectors, but rather entirely
on scalars.

- It is a 2 dimensional array of scalars

VHDL Data Types: Array Assignments

* Type Definition:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD LOGIC; -- 1D array
TYPE array1 IS ARRAY (0 TO 3) OF row; -- 1Dx1D array

« Signal Declaration;

SIGNAL x: row;
SIGNAL y: array1,

« Scalar Signal (array) assignment:

x(0) <= y(1)(2);
* Note the two pairs of parentheses since y is a 1Dx1D array.

VHDL Data Types: Array Assignments

Type Definition:
TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
-- 1Dx1D

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC;
-- 2D array

Signal Declarations:
SIGNAL v: array?2;
SIGNAL w: array3;

Scalar Signal Assignments:
X(1) <=v(2)(3);
x(2) <=w(2,1);

» Single pair of parentheses since w is 2D array

VHDL Data Types: Array Assignments

TYPE row IS ARRAY (7 DOWNTO 0) OF STD _LOGIC;

TYPE array1 IS ARRAY (0 TO 3) OF row;

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE array3 1S ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

e Signal Declaration;

SIGNAL x: row; Scalar Signal Assignments:
SIGNAL y: array1; y(1)(1) <= x(6);
SIGNAL v: array2; ¥(2)(0) <= v(0)(0):

SIGNAL w: array3; V(0)(0) <= w(3.3);

w(1,1) <= x(7),
w(3,0) <= v(0)(3);

VHDL Data Types: Array Assignments

* Vector Signal Assignments
TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;
TYPE array1 IS ARRAY (0 TO 3) OF row;
TYPE array2 IS ARRAY (0 TO 3) OF STD LOGIC VECTOR(7 DOWNTO 0);
TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

« Signal Declaration;

SIGNAL x: row;

SIGNAL y: array1;
SIGNAL v: array2;
SIGNAL w: array3;

 Legal Assignments
x <=y(0);
y(1)(7 DOWNTO 3) <= x(4 DOWNTO 0),
v(1)(7 DOWNTO 3) <=v(2)(4 DOWNTO 0),;

VHDL Data Types: Array Assignments

« Vector Signal Assignments
TYPE row IS ARRAY (7 DOWNTO 0) OF STD _LOGIC;
TYPE array1 IS ARRAY (0 TO 3) OF row;
TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC;

* Signal Declaration; - Why are the following assignments illegal ?

x <=v(1);

SIGNAL x: row,; X <= w(2);

SIGNAL y: array1; x <=w(2, 2DOWNTO 0);
v(0) <= w(2, 2 DOWNTO 0);

SIGNAL v: array?2; v(0) <= w(2);

SIGNAL w: array3; y(1) <= v(3);

w(1, 5 DOWNTO 1) <=v(2)(4 DOWNTO 0),

VHDL OPERATORS

* Logical operators

Logical operation | Operator | Example

AND AND Z <= (A AND B);
NAND NAND Z <= (A NAND B);
NOR NOR Z <= (A NOR B);
NOT NOT Z <= NOT (A);
OR OR Z <= (A OR B);
XNOR XNOR Z <= (A XNOR B);
XOR XOR Z <= (A XOR B);

VHDL OPERATORS

* Arithmetic operators

Arithmetic operation | Operator | Example
Addition + Z <= A + B;
Subtraction - Z <= A - B;
Multiplication * Z <= A * B;
Division / Z <= A / B;
Exponentiating xx L <= 4 ** 2;
Modulus MOD Z <= A MOD B;
Remainder REM Z <= A REM B;
Absolute value ABS Z <= ABS A;

VHDL OPERATORS

« Relational operators

Relational operation Operator | Example

Equal to = If (A = B) Then
Not equal to /= If (A /= B) Then
Less than < If (A <« B) Then
Less than or equal to <= If (A <= B) Then
Greater than > If (A > B) Then
Greater than or equal to > = If (A >= B) Then

VHDL Reserved Words

* Reserved words cannot be used by designers for identifiers
such as variables, signal names, etc.

abs file of then
after for open to
all or transport
and generic others type
architecture out
array if until
in package use
begin inertial port
inout process variable
case 1S
component rerm walit
configuration library report when
constant linkage rol while
loop ror with
downto
mod select XNor
else signal Xor
elsif nand sla
end next sl
entity nor sra
not srl

Data Types:
Advanced Topics

VHDL Data Types

e Package std logic_arith of library IEEE:
* Defines SIGNED and UNSIGNED data types, plus several
data conversion functions, like:

- conv_integer(p),
- conv_unsigned(p, b),
- conv_signed(p, b), and
- conv_std logic vector(p, b).

« Allow arithmetic operations

« Data conversion to be discussed in later slides

VHDL Data Types

« Packages std_logic_signed and std_logic_unsigned of library IEEE:

e Contain functions that allow operations with
STD LOGIC VECTOR data to be performed as if the data were
of type SIGNED or UNSIGNED, respectively.

User Defined VHDL Data Types

User Defined Integer Data Types
* Subtype of Integer
« Examples
- TYPE integer IS RANGE -2147483647 TO +2147483647;

- TYPE my _integer IS RANGE -32 TO 32;

- -- Auser-defined subset of integers.
- TYPE student_grade IS RANGE 0 TO 100;

- -- Auser-defined subset of integers or naturals.
- TYPE natural IS RANGE 0 TO +2147483647;

User Defined VHDL Data Types

» User Defined ENUMERATED Data Types
« Data type consisting of a set of named values.

 Examples
- TYPE bit IS ('0', '1');

- TYPE my_logic IS (‘0% '1', 'Z");
— This is the pre-defined type BIT

- TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;
-- This is the pre-defined type BIT _VECTOR.
NATURAL RANGE <>, on the other hand, indicates that the
only restriction is that the range must fall within the
NATURAL range.

User Defined VHDL Data Types

 User Defined ENUMERATED Data Types
 More Examples
- TYPE state IS (idle, forward, backward, stop);
-- An enumerated data type, typical of finite state machines.
« Two bits will be used to encode this data type values.
« |dle will be the default value

- TYPE color IS (red, green, blue, white, black);
-- Another enumerated data type.
» Three bits will be used for encoding this data type.
* Red will be the default value

VHDL Data Types:Records

» Like Arrays Arrays records are collections of objects.
« Unlike arrays records can contain objects of different data types.
 Example

TYPE birthday IS RECORD
day: INTEGER RANGE 1 TO 31;
month: month _name; — month _name datatype should be pre-
defined

END RECORD;

VHDL Data Types:
Signed and Unsigned Types

Defined in the STD _LOGIC_ARITH package of the IEEE library
For arithmetic operations.
Signal Declaration Examples
SIGNAL x: SIGNED (7 DOWNTO 0),
SIGNAL y: UNSIGNED (0 TO 3);
Syntax is similar to that of STD_LOGIC_VECTOR not like integers
An UNSIGNED value is a number never lower than zero.
For example,
- Unsigned “0101” = the decimal 5
- Unsigned “1101” signifies 13.
- Signed “0101” = the decimal 5
- Signed “1101” signifies -3 (Two's complement)

VHDL Data Types:
Signed and Unsigned Types

 Operations Example

LIBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std logic_arith.all;

SIGNAL a: IN SIGNED (7 DOWNTO 0);

SIGNAL b: IN SIGNED (7 DOWNTO 0);

SIGNAL x: OUT SIGNED (7 DOWNTO 0);

SIGNAL u: IN STD _LOGIC _VECTOR (7 DOWNTO 0);
SIGNAL v: IN STD LOGIC VECTOR (7 DOWNTO 0),
SIGNAL y: OUT STD LOGIC VECTOR (7 DOWNTO 0),

xX<=a+b; - -legal
x=aAND b; - - illegal
y=a+bh; - - illegal

y=aAND b; - - legal

VHDL Data Types:
Signed and Unsigned Types

« std logic signed and std logic_unsigned packages allows both logical
and arithmetic operations

« Example:

LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic unsigned.all;

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0),
SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0),
SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0),

v <=a+ Db, -- legal
w <=aAND b, -- legal

Type Conversion

« Direct operation between different data types is illegal in VHDL
« Solution!!!! = Data conversion
 Examples:

TYPE long IS INTEGER RANGE -100 TO 100;
TYPE short IS INTEGER RANGE -10 TO 10;
SIGNAL x : short;

SIGNAL y : long;

y<=2+5; -- error, type mismatch
y <=long(2*x +5); -- OK, result converted into type long

Type Conversion

Data conversion defined in STD LOGIC_ARITH
conv_integer(p) :
- Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
or STD_ULOGIC to an INTEGER value.
- Notice that STD LOGIC_VECTOR is not included.

conv_unsigned(p, b):
Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
or STD ULOGIC to an UNSIGNED value with size b bits.

conv_signed(p, b):
Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
or STD ULOGIC to a SIGNED value with size b bits.

Type Conversion

e conv_std logic vector(p, b):

 Converts a parameter p of type INTEGER, UN-SIGNED,
SIGNED, or STD LOGICtoa STD _LOGIC VECTOR value
with size b bits.

 Example:

LIBRARY ieee;
USE ieee.std logic _1164.all;
USE ieee.std logic arith.all;

§IGNAL a: IN UNSIGNED (7 DOWNTO 0);
SIGNAL b: IN UNSIGNED (7 DOWNTO 0),
SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0),

y <= CONV_STD LOGIC_VECTOR ((a+b), 8);

e a+b is converted from UNSIGNED to an 8-bit
STD LOGIC VECTOR value, then assigned to .

VHDL Data Type:Example

e Four Bit Adder ----- Solution 2: in/out=SIGNED --=-==-=---

[IBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std logic arith.all;

ENTITY adder1 IS
PORT (a, b: IN SIGNED (3 DOWNTO 0),
sum : OUT SIGNED (4 DOWNTO 0)),

END adder1;

ARCHITECTURE adder1 OF adder1 IS
BEGIN
sum<=a+b;

END adder1;

VHDL Data Type:Example

Four Bit Adder------ Solution 2: out=INTEGER -----------

LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic _arith.all;
ENTITY adder2 IS
PORT (a, b : IN SIGNED (3 DOWNTO 0);
sum : OUT INTEGER RANGE -16 TO 15);
END adder2;
ARCHITECTURE adder2 OF adder2 IS
BEGIN
sum <= CONV_INTEGER(a + b);
END adder2;

