o following subrou-
Cnmm(]n end‘

s in the stack pointer r
bytes begins at the memory

r register. For example, if the

ing O ins at 2098H and _,
creasing memory addresses such as 2098H, 2097H, etc.). Therefore, as a general practice,
the stack is initialized at the highest available memory location to prevent the program
from being destroyed by the stack information. The size of the stack is limited only by
Data bytes in the register pairs of the microprocessor can be stored on the stack
(two at a time) in reverse order (decreasing memory address) by using the instruction
PUSH. Data bytes can be transferred from the stack to respective registers by using the
mstruction POP. The stack pointer register tracks the storage and retrieval of the informa-

tion, Bm Iwo datg bytes are being stored at a time, the 16-bit memory address in the
_smck pougr ;eglstcr is decremented by two; when data bytes are retrieved. the address is
icremented by two. An address in the stack pointer register indicates that the next two

ot O A 15 |
ory locations (in desce ding numerical order) can be used for storage

STACK AND SUBROUTINES

The stack is shared by the programmer and the mi
g PUSH and POP instructions.

can store and retreve the contents of a register pair by usin
gjmilarly, the MICTOPTOCessor automatically stores the contents of the program counter

when a subroutine 1s called (to be discussed in the next section). The instructions neces-
sary for using the stack are explained below:.

(] Load Stack Pointer
U Load the stack pointer register with a 16-bit address. The

LXI instructions were discussed in Chapter 7/
Store Register Pair on Stack
(] This is a 1-byte instruction
O It copies the contents of the specified register pair on the

stack as described below
[0 The stack pointer register is decremented, and the con-

tents of the high-order register (e.g., register B) are
copied in the location shown by the stack pointer register

O The stack pointer register is again decremented, and the
contents of the low-order register (e.g., register C) are
copied in that location

0 The operands B, D, and H represent register pairs BC,

DE, and HL, respectively
[0 The operand PSW represents Program Status Word,
meaning the contents of the accumulator and the flags

Rp Retrieve Register Pair from Stack

[0 This is a 1-byte instruction
O It copies the contents of the top two mermory locations

B

D of the stack into the specified register pair

H (] First, the contents of the memory locatron indicated by
PSW the stack pointer register are copied into the low-order

register (e.g., register L), and then the stack pointer reg-

ister is incremented by 1
1 The contents of the next memory location are copied

into the high-order register (€.g., register H), and the

stack pointer register is again incremented by 1

ed in Figure 9.1), the stack pointer 18 initial-

e stored on the stack by using the PUSH 1n-
(actual instructions are not

jons (1llustrat

283

ACK AND SUBROUTINES
ST 291

S, the subroutine technique is used.
from the main program, and are called by

Delay instructions are written once. separately
the main program when needed. |

The 808_5 microprocessor has two instructions
(call a subroutine), and RET (return to main program

struc;:t;(tm thlﬁs :;gd ;n rtlht-': main program to call a subroutine, and the RET instruction 18
use Of the subroutine to return to the main program.)When a subroutine is

]callf’:d, t}ﬁz EOXSEI§ of the program counter, which is the address/of the instruction fol-
owing Instruction, 1s stored on the stack and the program execution is trans-

ferred to the subroutine address. When the RET instruction 1s executed at the end of the
subroutine, the memory address stored on the stack is retrieved. and the sefjuence of ex-

ecution 1s resumed in the main program. This sequence of events is illustrated in
Example 9.3.

to implement subroutines: CALL
from a subroutine). The CALL in-

INSTRUCTIONS
Opcode Operand

CA 16-bit memory Call Subroutine Unconditionally
address of a [0 This is a 3-byte instruction that transfers the program
subroutine sequence to a subroutine address
[0 Saves the contents of the program counter (the ad-
dress of the next instruction) on the stack
[0 Decrements the stack pointer register by two
[0 Jumps unconditionally to the memory location speci-
fied by the second and third bytes. The second

byte specifies a line number and the third byte

specifies a page number _
] This instruction is accompanied by a return instruc-

tion in the subroutine

RET Return frorp Subroutine Ut?conditionally

pointer register by two |
] Unconditionally returns from a subroutine

| . . . e
The conditional Call and Return 1nstructions will be described later 1n e

chapter.

the 8085 instruction sét 1n-
turn instructions.

In additj.on to the unconditional CALL and RET instructions,
cludes eight Restart instructions and eight conditional Call and Re

9.31 Restart (RST) Instructions

RST instn:lctions are 1-byte Call instructions that transfer the p
cific location on page O0H. They are executed the same way as Call instructions. When

an RST instruction is executed, the 8085 stores the contents of the program counter (the
address of Lh‘e next instruction) on the top of the stack and transfers the program 1O the
Restart location. These instructions are generally used in conjunction with the interrupt

process c.:liscussed in Chapter 12. These instructions are listed here to emphasize
are Call instructions and not necessarily always associated with the interrupts. The list of

eight RST instructions is as follows:

rogram execution to a spe-

RST O Call 00OOCGH =~ RST 4 Call 0020H

"RST 1 Call 0008H RST 5 Call 0028H
RST 2 Call 0010H RST 6 Call 0030H

RST 3 Call O0O18H RST 7 Call 0038H
\/9{52 Conditional Call and Return Instructions

The conditional Call and Return instructions
Carry, Zero, Sign, and Parity. The conditions are teste
In case of a conditional Call instruction, the. pro '

condition is met; otherwise, the main program
Return instruction, the sequence returns {0 the main program if the condition is met; oth-

erwise, the sequence in the subroutine is continued. If the Call instruction in the main pro-
gram is conditional, the Return instruction in the subroutine can be conditional or uncon-

ditional. The conditional Call and Return instructions are listed for reference.

: ONDITIONAL CALL

' CC Call subroutine if Carry flag is set (CY = 1)

) CNC Call subroutine if Carry flag is reset (CY =0)
>/ CZ Call subroutine if Zero flag is set (Z=1)

/ CNZ Call subroutine if Zero flag 1s resel (Z =0)
Call subroutine if Sign flag 1s set (S = 1, negative number)

Call subroutine if Sign flag 1s reset (S = 0, positive number)

4

CPE Call subroutine if Parity flag 1s set (P = 1, even parity)

i CPO Call subroutine if Parity flag is reset (P = 0, odd parity)

 CONDITIONAL RETURN
" RC Retum if Carry flag is set (CY = 1)
RNC Retumn if Carry flag is reset (CY = 0)
RZ Return if Zero flag is set (Z = 1)
~ RNZ Retumn if Zero flag is reset (Z = 0)
" RM Return if Sign flag is set (S = 1, negative number)
RP Return if Sign flag is reset (S = 0, positive number)
/ RPE Return if Parity flag is set (P = 1, even parity)
- RPO Return if Parity flag is reset (P = 0, odd parity)

ADVANCED SUBROUTINE CONCEPTS

calling of a subroutine by a maip, prC-
echniques, such as nesting and multip]e-

STACK AND SUBROUTINES

FIGURE 9.16
Multiple-Ending Subroutine

2058 RC

2070

The main program in Figure 9.15 calls the subroutine from location 2050H. The ad-
dress of the next instruction, 2053H, is placed on the stack, and the program is transferred
to the subroutine at 2090H. Subroutine 1 calls Subroutine II from location 209AH. The

address 209DH is placed on the stack, and the program is transferred to Subroutine 1l.
The sequence of execution returns to the main program, as shown in Figure 9.15.

9.42 Multiple-Ending Subroutines

Figure 9.16 illustrates three possible endings to one CALL instruction. The subroutine
has two conditional returns (RZ—Return on Zero, and RC—Return on Carry) and one

unconditional return (RET). If the Zero flag (Z) is set, the subroutine returns from loca-
tion 2050H. If the Carry flag (CY) is set, it returns from location 2058H. If neither the Z

nor the CY flag is set, it returns from location 2070H. This technique is illustrated 1n
Chapter 10, Section 10.42.

To implement a subroutine, the following steps are necessary.

L e ot et b sttt ad nrafarably 2t the highest memcery loca-

