Reciprocating Compressor – useful equations

Compressor displacement volume or swept volume or stroke volume $=\frac{\pi}{4}D^2L$, where D = stroke length of piston and D = bore of the cylinder

Volume flow rate of air = $\frac{\pi}{4}D^2L*\frac{N}{60}$, FOR SINGLE ACTING COMPRESSOR

Volume flow rate of air = $\frac{\pi}{4}D^2L*\frac{N}{60}*2$, FOR DOUBLE ACTING COMPRESSOR

 $Piston\ Speed = 2LN\ m/minute$

Single stage Compressor, Equation for work input/cycle without clearance volume

$$W=\left(\frac{n}{n-1}\right)P_1V_1\left[\left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}-1\right]$$
, n = polytropic index

$$W = \left(\frac{n}{n-1}\right) mRT_1 \left[\left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} - 1 \right]$$

$$W = \left(\frac{n}{n-1}\right) \left(P_2 V_2 - P_1 V_1\right)$$

This is also known as indicated work input per cycle.

For polytropic process replace 'n' by ' γ '

Indicated Power =
$$\left(\frac{n}{n-1}\right)P_1V_1\left[\left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}-1\right]*N/60$$
, V₁ volume in m³/cycle

For isothermal process, W = $P_1V_1log_e\left(\frac{P_2}{P_1}\right)$

Least work input is for isothermal process

Mean Effective Pressure (Pm)

$$P_m = \frac{work \ input \ required \ per \ cycle \ (indicated \ work \ done \ per \ cycle)}{swept \ volume \ of \ the \ cylinder}$$

Indicated power (IP) = indicated work done per cycle * number of cycles per unit time

For double acting air compressors multiply the work input by 2

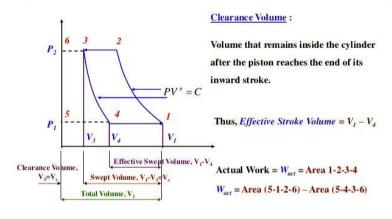
$$= P_m * L * A * \frac{N}{60} * n$$

'n=1 for single acting compressor, 'n=2 for double acting compressor

Or

 $IP = Indicated\ work * \frac{N}{60} * n, n = 1\ for\ single\ acting\ and\ n = 2\ for\ double\ acting$

Mechanical Efficiency


$$= \frac{Indicated\ power}{brake\ Power}$$

Isothermal efficiency

$$= \frac{isothermal\ work\ input}{actual\ indicated\ work\ input}$$

Single stage Compressor, Equation for work input with clearance volume

Reciprocating Compressor – Equation for Work

$$W=\left(rac{n}{n-1}
ight)P_1(V_1-V_4)\left[\left(rac{P_2}{P_1}
ight)^{rac{n-1}{n}}-1
ight]$$
, n = polytropic index

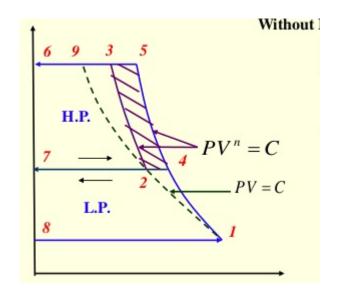
Clearance Ratio, $C = \frac{v_C}{v_S}$

Volumetric efficiency of reciprocating air compressor

Use only this equation for finding out the dimensions of the cylinder. Do not use volumetric efficiency corresponding to FAD for that.

$$=1+C-C\left(\frac{P_2}{P_1}\right)^{\frac{1}{n}}$$

Or


$$= \frac{effective \ swept \ volume}{swept \ volume} = \frac{V_1 - V_4}{V_1 - V_3}$$

Free Air Delivery (FAD)

$$\begin{split} \left[\frac{P_{amb}(V_1-V_4)_{amb}}{T_{amb}}\right]_{atmospheric} &= \left[\frac{P_1(V_1-V_4)}{T_1}\right]_{actual \, suction} \\ &(V_1-V_4)_{amb} = \frac{P_1T_{amb}(V_1-V_4)}{P_{amb} \, T_1} \\ volumetric \, efficiency \, (FAD) &= \frac{P_1T_{amb}}{P_{amb} \, T_1} \left[1+C-C\left(\frac{P_2}{P_1}\right)^{\frac{1}{n}}\right] \end{split}$$

Multistage Compression

For single acting, 2 stage compressor, Work done/cycle = W_{LP} + W_{HP}

Without Intercooling, $W = W_{LP} + W_{HP}$

$$W = \frac{n}{n-1} P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right] + \frac{n}{n-1} P_2 V_4 \left[\left(\frac{P_3}{P_2} \right)^{\frac{n-1}{n}} - 1 \right]$$

With Perfect Intercooling, $W = W_{LP} + W_{HP}$, $T_2 = T_1$

$$W = \frac{n}{n-1} P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right] + \frac{n}{n-1} P_2 V_2 \left[\left(\frac{P_3}{P_2} \right)^{\frac{n-1}{n}} - 1 \right], P_1 V_1 = P_2 V_2 = mRT_1$$

For minimum work input to the compressor of a two stage air compressor, **Pressure ratio in** each stages are same,

$$\frac{P_2}{P_1} = \frac{P_3}{P_2}$$
 or $P_2 = \sqrt{P_1 P_3}$

Minimum Work input to a multistage compressor

For 2 stage,

$$W = \frac{2n}{n-1} P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

Or

$$W = \frac{2n}{n-1} P_1 V_1 \left[\left(\frac{P_3}{P_1} \right)^{\frac{n-1}{2n}} - 1 \right]$$

General Equation for x stages

$$W = \frac{xn}{n-1} P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

Or
$$W = \frac{xn}{n-1} P_1 V_1 \left[\left(\frac{P_{x+1}}{P_1} \right)^{\frac{n-1}{xn}} - 1 \right]$$