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Meaning

[n the multiple regression model

y=Xf+e,
it 15 assumed that

V(e =0l
1.,

Var(e')=0",

Cov(ge)=0,i# j=12,..n.
In this case, the diagonal elements of the covariance matrix of ¢ are the same indicating that the variance of

each ¢ 15 same and off-diagonal elements of the covartance matrix of ¢ are zero indicating that all

disturbances are pairwise uncorrelated. This property of constancy of variance 1s termed as homoskedasticity

and disturbances are called as homoskedastic disturbances.



[n many situations, this assumption may not be plausible, and the variances may not remain the same. The
disturbances whose vartances are not constant across the observations are called heteroskedastic disturbance,
and this property 1s termed as heteroskedasticity. In this case
) .
Var(e)=07,i=12..,n

and disturbances are pairwise uncorrelated.

The covartance matrix of disturbances 1

: ) ) ) O O'; O
V(6)=dog(0}.03....0,)=| .




Graphically. the following pictures depict homoskedasticity and hetecroskedasticity.
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Heteroskedasticity ( FPar(y) increases with x) Heteroskedasticity ( Far(y) decreases with x)

Examples: Suppose in a simple linear regression model. x denote the income and y denotes the expenditure
on food. It is observed that as the income increases. the expenditure on food increases because of the choice
and varieties in food increase, in general. up to a certain extent. So the variance of observations on y will not
remain constant as icome changes. The assumption of homoscedasticity implies that the consumption pattern
of food will remain the same wrespective of the income of the person. This may not generally be a correct

assumption in real situations. Instead. the consumption pattern changes and hence the variance of y and so the

variances of disturbances will not remain constant. In general. it and will be increasing as income inereases.



— Reasons for the Problem of Heteroscedasticity

o One of the sources of heteroscedasticity 18 grouping. Data from large
curveys are often published in grouped form with an different number
scale Tties in different groups. Working with group averages in such cases
of ent! ‘m heteroscedastic disturbances.
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B (i) There may be certain outlying obscrvation in the data which would

. rease or decrease error variance.
f m(iii) The problem of hclcrf’sc.cdasticity ofle
 ariable varies enormously wnhm.lhc sample.
() Following the error-learning model, as people learn, their errors of
. pehaviour become smaller over time example, typing errors.
() AS Incomes more discretionary income and hence

n arises because the scale of a

grow, people have
about the disposition of their income. Hence, o] is likely

ore scope for choice
in the regression of saving on income we may

(o increase with income. Thus,
is increasing with income because people have morce choices

s behaviour. Similarly, growth oriented companies are likely
dend payout ratio than established
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ﬁnd that 0',2

ut their saving beha : ! ly,
fob(;how more variability n their divi

companics.

(vi) Another
of one or more re
variables such as income, weal ‘

in capitalistic cconomy IS uneven,

and wealth |
wealth being owned by a few at the top.
(vii) Other sources of heteroscedasticity can also arise because of

(a) incorrect data transfor- -ation and (/) incorrect functional form, example lincar

versus log-linear models

source of heteroscedasticity is ~hawness in the distribution
regressors included in U moact. Examples are cconomic
th. It is known that the distribution of income
with the bulk of the income and



Consequencesof Heteroscedasticity

If E(u})#0, i.e problem of heteroscedasticity 1S present thep

we have the following consequences.
1. The coefficient of the estimates will be statistically unbiased. Let yg

take a two variable model Y;= B+ B Xit U
’ X Vi
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OLS estimators are
Still linear
Still unbiased
NOT minimum variance
Variances of OLS estimators are biased

May be positive bias (overestimate) or negative
(underestimate)

Hypothesis tests using t and F distributions are
unreliable




GRAPHICAL METHOD

» In this method Residual square (r;? or r;?’)is
plotted against the predicted value of the
dependent variable. If the plot doesn’t show any
pattern then heteroscedasticity is said to be absent
otherwise 1t 1s said to be absent.

» In the figures on next slide first figure (a) shows
case of homoscedastic data whereas other figures
(b, c. d & e) are the examples of heteroscedastic
data [1].
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Tests for heteroskedasticity

The presence of heteroskedasticity affects the estimation and test of hypothesis. The heteroskedasticity can
enter mfo the data due to various reasons. The tests for heteroskedasticity assume a specific nature of
heteroskedasticity, Various tests are avatlable i the literature, ¢.g..

. Bartlett test

2. Breusch Pagan test

3. Goldfeld Quandt test

4, Glesjer test

5. Testbased on Spearman’s rank correlation coefficient

6. White test
Ramsey test

8. Harvey Phillips test

0, Szroeter test

10.  Peak test (nonparametric) test



I Spearman’s rank correlation test

It d denotes the difference in the ranks assigned to two different characteristics of the i" object or

phenomenon and »n is the number of objects or phenomenon ranked. then the Spearman’s rank correlation
coetficient 1s defined as

>a?

r=1-6 ———|: —-1=r=1.
nin- —1)

This can be used for testing the hypothesis about the heteroskedasticity.

Consider the model

;=B + BX, +s,.

1. Run the regression of ¥ on X and obtain the residuals e.

2. Consider |.=31.| :

3. Rank both |e?.| and X (or y,) in an ascending (or descending) order.

4. Compute rank correlation coetficient » based on |.=3z.| and X, (or »,).

5. Assuming that the population rank correlation coefficient is zero and n> 8, use the test statistic

FaJrn—2
3
A1—r"

which follows a t-distribution with (n—2) degrees of freedom.

=

6. The decision rule is to reject the null hypothesis of heteroskedasticity whenever  f,=¢__(n—2).
If there are more than one explanatory variables. then rank correlation coefficient can be computed

between |gz_

and each of the explanatory variables separately and can be tested using ¢, .



GLEJSER TEST

The Glejser test 1s similar to Park’s test. Instead of
one Glejser had used different functional forms to
model error variance (or 1ts estimate) over
explanatory variables. If any of the model comes out
to be significant then heteroscedasticity i1s said to be
present.

The test procedure 1s as follows:
1. Use OLS and obtain the residual vector e on the basis of available study and explanatory variables.
2. Choose Z and apply OLS to
le| =36, +8Z" +v,
where v, 1s the associated disturbance term.

3. Test H,:8, =0 using f-ratio test statistic.

1 _ . :
4, Conduct the test for h =+1.+—. So the test procedure 1s repeated four tumes.

In practice. one can choose any value of h. For simplicity, we choose h=1.
e The test has only asymptotic justification and the four choices of h give generally satisfactory results.

e This test sheds light on the nature of heteroskedasticity.



PARK’S TEST

Park had modeled the error variance as a function
of explanatory variables defined as:

e A azXfe"i

or, log, I-Z = log, 0% + Blog. X; + v;
Where v; 1s homoscedastic error term.

However, since o> 1s unknown Park had been
suggested the use of r. in its place. If B comes out
to be significant then heteroscedasticity 1s said to be

present in the data.



Another variant of Bartlett’s test

Another variant of Bartlett’s test 1s based on the likelihood ratio test statistic

where

To obtain an unbiased test and modification of -2Ilnuw  which 1s a closer approximation to

7o, under H,. Bartlett test replaces n, by (1, —1) and divide by a scalar constant. This leads to the statistic

(n—m)logs® —> (n, —1)logo;
M — Pml

B
3(m—1)| =\ n—1 M—

which has a »” distribution with (m—1) degrees of freedom under H, and

2 1 % N
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In experimental sciences, it 1s easier to get replicated data. and this test can be easily applied. In real-life

applications. it is challenging to get replicated data. and this test may not be applied. This difficulty 1s overcome

in Breusch Pagan test.



I| Goldfeld Quanat test

This test is based on the assumption that o] is positively related to X,,. i.e.. one of the explanatory variables

explains the heteroskedasticity in the model. Let j* explanatory variable explains the heteroskedasticity. so

2
op c:cﬁ:j

> e
or o, =g X;.

The test procedure is as follows:

!w.a

A

Rank the observations according to the decreasing order of X,

Split the observations into two equal parts leaving ¢ observations i the middle.

n—c . . n—c
observations provided

- —

= k.

So each part contains

Run two separate regression in the two parts using OLS and obtain the residual sum of squares SS,_
and SS__,.

The test statistic is

55
-F;:l — el L
SSN:I
which follows F —distribution. i.e.. F[ H :c —k. 1 :C —fc} when H, true.

. ! : n—c H—c
The decision rule is to reject H, whenever F, > Fi_a[ - — k. > —fc} :

e This test is a simple test. but it is based on the assumption that one of the explanatory wvariables helps in

determining the heteroskedasticity.

e Then the test is an exact finite sample test.

e The only difficulty in this test is that the choice of ¢ is not obvious. If a large value of ¢ is chosen. then

. "
it reduces the degrees of freedom

— _C - - n —
— k. and the condition

= &t maw be violated.



BREUSCH-PAGAN—GODFREY TEST

The goldfled—Quandt test depend upon the
correct selection of the value of ¢ and the correct
explanatory variable according to which
observations are to be arranged.

To overcome this difficulty Breusch—Pagan—
Godfrey defined another test.

BREUSCH-PAGAN—GODFREY TEST

1. Fit the regression model Y = X3 + € using OLS method and
obtain the residuals ry, r>, ..., I,,.

N

n
Obtain the estimate of 62 using: s2=>"#?/n
i=1

3. Construct the variable p, using: p; = 72/62
4. Regress the p; over the Z,;’s. Some or all X;’s may serve as 7Z,;’s.

D = @ + @12y + @pln; + 00+ Al TV
Where vi 1s the homoscedastic error term.
Obtain the Explained (Regression) Sum of Square (ESS) and
define: ® = ESS/2
6. If ® exceeds the X&m-1) at given level of significance then
heteroscedasticity i1s said to be present.

'



REMEDIAL MEASURES _
As explained earlier, heteroscedasticity does not destro
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method of dealing with
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