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1. At short distances it is stronger than the Coulomb force; the 

nuclear force can overcome the Coulomb repulsion of protons 

in the nucleus.

2. At long distances, of the order of atomic sizes, the nuclear 

force is negligibly feeble; the interactions among nuclei in a 

molecule can be understood based only on the Coulomb force.

3. Some particles are immune from the nuclear force; there is no 

evidence from atomic structure, for example, that electrons 

feel the nuclear force at all.

A few properties of nucleon-nucleon force:



Some other remarkable properties of the nuclear force:

1. The nucleon-nucleon force seems to be nearly independent of 

whether the nucleons are neutrons or protons. This property is 

called charge independence.

2. The nucleon-nucleon force depends on whether the spins of the 

nucleons are parallel or anti-parallel.

3. The nucleon-nucleon force includes a repulsive

term, which keeps the nucleons at a certain 

average separation.

4. The nucleon-nucleon force has a non-central or 

tensor component. This part of the force does not 

conserve orbital angular momentum, which is a 

constant of the motion under central forces.



1. A deuteron (2H nucleus) consists of a neutron and a proton. (A 

neutral atom of 2H is called deuterium.)

2. It is the simplest bound state of nucleons and therefore gives us 

an ideal system for studying the nucleon-nucleon interaction.

3. An interesting feature of the deuteron is that it does not have 

excited states because it is a weakly bound system.

The Deuteron



The simplest nucleus in nature is that of the hydrogen isotope, deuterium. Known as 

the “deuteron,” the nucleus consists of one proton and one neutron. Due to its 

simplicity, the deuteron is an ideal candidate for tests of our basic understanding of 

nuclear physics. Recently, scientists have been studying the intrinsic shape of the 

deuteron. Dominated by three components describing the interactions of the quark 

components of the neutron and proton, its shape is not spherical. Recent tests have 

shown no deviations in the predictions of standard nuclear physics.

This image shows the intrinsic 

shape of the deuteron by 

combining the results from 

three recent nuclear physics 

experiments.



The Deuteron - Angular momentum

1. In analogy with the ground state of the hydrogen atom, it is reasonable to assume

that the ground state of the deuteron also has zero orbital angular momentum L = 0

2. However the total angular momentum is measured to be I = 1 (one unit of h/2π)

thus it follows that the proton and neutron spins are parallel. sn+sp = 1/2 + 1/2 = 1

3. The implication is that two nucleons are not bound together if their spins are anti-

parallel, and this explains why there are no proton-proton or neutron-neutron bound 

states (more later). 

4. The parallel spin state is forbidden by the Pauli exclusion principle in the case of 

identical particles

5. The nuclear force is thus seen to be spin dependent.

• Note that there is a small electric quadrupole 
moment so our assumption latter of  zero angular 

momentum is not quite correct



Constituents 1 proton 1 neutron

Mass 2.014732 u

Binding energy 2.224589 ± 0.000002 MeV

Angular momentum 1

Magnetic moment 0.85741 ± 0.00002 μN

Electric quadrupole moment  +2.88 x 10–3 bar

RMS separation 4.2 fm

The Deuteron

The deuteron, composed of a proton and a neutron, is a stable particle.

abundance of 1.5 x 10-4 compared to 0.99985 for ordinary hydrogen.



The Deuteron - Binding energy

Binding energy of the deuteron is 2.2 MeV.

If the neutron in the deuteron were to decay to form a proton, electron 

and antineutrino, the combined mass energies of these particles would 

be 2(938.27 MeV) + 0.511 MeV = 1877.05 MeV

But the mass of the deuteron is 1875.6 MeV !!



The Deuteron – Measured Binding energy

•  Mass doublet method

m(2H) = 2.014101789 ± 0.000000021 u

m(2H) = 2.014101771 ± 0.000000015 u

•  Measure energy released (gamma) on 
formation from a neutron and proton

B = [m(1H) + m(n) - m(2H)]c2 = 2.22463 ± 0.00004 MeV

1H + n → 2H + γ B = 2.2245 ± 0.000002 MeV

γ + 2H → 1H + n B = 2.224 ± 0.002 MeV

•  Photodissociation

(1)

(2)

(3)



As we have discussed previously, the average binding energy per nucleon is about 7 ~ 8 MeV for 

typical nuclei. The binding energy of the deuteron, B = 2.224 MeV, is away too small when 

compared with typical nuclei. This means that the deuteron is very weakly bound.

Here we want to explore more about this result and study the properties of the deuteron.

To simplify the analysis of the 

deuteron, we assume that the 

nucleon-nucleon potential is a 

three-dimensional square well, as 

shown in the figure a:
figure a

Nuclear model 

potential for studying 

the deuteron



Here r represents the separation between 

the proton and the neutron, so R is in effect 

a measure of the diameter of the deuteron.

(4)

The dynamical behavior of a nucleon must be described by the Schrödinger’s equation:
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If the potential is not orientationally dependent, a central potential, then the wave function 

solution can be separated into radial and angular parts:
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where m is the nucleon mass.

Quantum mechanical description of the weak binding for the deuteron



Substitute R(r) = u(r)/r in to the Schrödinger’s equation the function u(r) satisfies the 

following equation ;
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The solution u(r) is labeled by two quantum numbers n and l so that:
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The full solution Ψ(r) then can be written as 
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n:  the principal quantum number which determines 

the energy of an eigenstate.

l:   the orbital angular momentum quantum number.

m:  the magnetic quantum number, –l ≦ m ≦ l.

Three quantum 

numbers to define an 

eigenstate



The angular part of the solution Ylm(θ,φ) is called the “spherical harmonic” of order l, m and 

satisfies the following equations:

For the case of a three dimensional square well potential with zero angular momentum (l = 0),

which we use as the model potential for studying the ground state of the deuteron, the 

Schrödinger’s equation can be simplified into:
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I.   When r < R
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And the solution is rkBrkAru 11 cossin)(  (15)
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The coefficient B must be set to zero. Therefore the 

acceptable solution of physical meaning is
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The Schrödinger’s equation is



The Schrödinger’s equation is: )(
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II.   When r > R
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Applying the continuity conditions on u(r) and du/dr at r = R, we obtain

211 cot kRkk  (20)

This transcendental equation gives a relationship between V0 and R.

From electron scattering experiments, the rms charge radius of the deuteron is 

known to be about 2.1 fm. Taking R = 2.1 fm we may solve from equation (20) 

the value of the potential depth V0. The result is V0 = 35 MeV.

R = 2.1 fm

V0 = 35 MeV

The bound state of the deuteron, 

at an energy of about -2 MeV, is 

very close to the top of the well.



Here we show the deuteron wave 

function for R = 2.1 fm. The 

exponential joins smoothly to the 

sine at r = R, so that both u(r) and 

du/dr are continuous. 

If the nucleon-nucleon force were just a bit weaker the deuteron bound 

state would not exist at all. In this situation the whole universe would be 

all quite different from the one we are observing. 



Spin and parity of the deuteron

● The measured spin of the deuteron is I = 1.

● By studying the reactions involving deuterons and the property

of the photon emitted during the formation of deuterons, we know

that its parity is even.

The total angular momentum I of the deuteron should be like 

I = sn + sp + l

where sn and sp are individual spins of the neutron and proton. 

The orbital angular momentum of the nucleons as they 

move about their common center of mass is l.

(21)



There are four ways to couple sn, sp, and l to get a total I of 1.

(a) sn and sp parallel with l = 0

(b) sn and sp antiparallel with l = 1

(c) sn and sp parallel with l = 1

(d) sn and sp parallel with l = 2

parallel

antiparallel

● Since we know that the parity of the deuteron is even and the parity associated 

with orbital motion is determined by (-1)l we are able to rule out some options. 

● Orbital angular momentum l = 0 and l = 2 give the correct parity determined from 

experimental observations.

● The observed even parity allows us to eliminate the combinations of spins that 

include l =1, leaving l = 0 and l = 2 as possibilities.



The magnetic dipole moment of the deuteron

If the l = 0 is perfectly correct description for the deuteron, there should be no orbital 

contribution to the magnetic moment. We can assume that the total magnetic moment is 

simply the combination of the neutron and proton magnetic moments:
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where gsn = -3.826084 and gsp = 5.585691.

If we take the observed magnetic moment to be the z component of μ 
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2

1
( 

N

pnN

879804.0   

)(
2

1





 

gg ss




(23)

The observed value is 0.8574376 ± 0.0000004 μN, in good but not 

quite exact agreement with the calculated value.



In the context of the present discussion we can ascribe the tiny discrepancy to 

the small mixture of d state ( l = 2) in the deuteron wave function:
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This means that the deuteron is 96% l = 0 ( s orbit) 

and only 4% l = 2 (d orbit).



The bare neutron and proton have no electric quadrupole moment, and so any 

measured nonzero value for the quadrupole moment must be due to the orbital motion.

― The pure l = 0 wave function would have a vanishing quadrupole moment.

The electric quadrupole moment of the deuteron

The observed quadrupole moment for the deuteron is 

b  00002.000288.0 Q

When the mixed wave function [equation (24)] is used to calculate the quadrupole 

moment of the deuteron (Q) the calculation gives two contribution terms. One is 

proportional to (ad)
2 and another proportional to the cross-term (asad).
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To calculate Q we must know the deuteron d-state wave function and it is obtainable from 

the realistic phenomenological potentials. The d-state admixture is of several percent in this 

calculation and is consistent with the 4% value deduced from the magnetic moment.



Some comments concerning the d-state admixture obtained from the studies 
of magnetic moment μ and the quadrupole moment Q:

1. This good agreement between the d-state admixtures deduced from μ and Q should 

be regarded as a happy accident and not taken too seriously. In the case of the 

magnetic dipole moment, there is no reason to expect that it is correct to use the 

free-nucleon magnetic moments in nuclei.

2. Spin-orbit interactions, relativistic effects, and meson exchanges may have greater 

effects on μ than the d-state admixture (but may cancel one another’s effect).

3. For the quadrupole moment, the poor knowledge of the d-state wave function makes 

the deduced d-state admixture uncertain.

4. Other experiments, particularly scattering experiments using deuterons as targets, 

also give d-state admixtures in the range of 4%. Thus our conclusions from the 

magnetic dipole and electric quadrupole moments may be valid after all.

5. It is important that we have an accurate knowledge of the d-state wave function 

because the mixing of l values in the deuteron is the best evidence for the noncentral 

(tensor) character of the nuclear force.



Nucleon-Nucleon Scattering
● The total amount of information about nucleon-nucleon interaction that we acquire from 

the study of the deuteron is very limited. As far as we know there is only one weakly 

bound state of a neutron and a proton.

● The configuration of the deuteron is l = 0, parallel spins, and ~ 2 fm separation.

● To study the nucleon-nucleon interaction in different configurations we need to perform 

nucleon-nucleon scattering experiments.

There are two ways to perform nucleon-nucleon experiments.

(a). An incident beam of nucleons is scattered from a target of nucleons.

The observed scattering of a single nucleon will include the 

complicated effects of the multiple encounters and is very difficult to 

extract the properties of the interaction between individual nucleons.

(b). An incident beam of nucleons is scattered from a target of hydrogen.

Incident nucleons can be scattered by individual protons. Multiple 

encounters are greatly reduced by large spatial separations between 

nucleons. Characteristic properties of nucleon-nucleon interactions can 

therefore be deduced without complications.



As in the case of electron scattering the nuclear scattering problem is analogous to the 

diffraction problem in optics. There are three features worth mentioning:

1. The incident wave is represented 

by a plane wave, while far from 

the target (obstacle) the scattered 

wave fronts are spherical. The total 

energy content of any expanding 

spherical wave front cannot vary; 

thus its intensity (per unit area) 

must decrease like r-2 and its 

amplitude must decrease like r-1.

2. Along the surface of any spherical scattered wave front, the diffraction is responsible 

for the variation in intensity of the radiation. The intensity thus depends on angular 

coordinates θ and φ.

3. A radiation detector placed at any point far from the target would record both incident

and scattered waves.



To solve the nucleon-nucleon scattering problem using quantum mechanics we assume 

the nuclear interaction by a square-well potential, as we did for the deuteron. 

In fact, the only difference between this calculation and that of the deuteron 

is that here we concerned with free incident particles with E > 0. 

For low energy nucleon-nucleon scattering we may 

simplify the Schrödinger’s equation by assuming l = 0. 
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If the incident energy is far below 20 MeV, the l = 0 assumption is justified.
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The Schrödinger’s equation of the two nucleons system is 

The mass appearing in the equation is the reduced mass and is about half of the nucleon mass.
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By defining the radial part wave function as 

u(r)/r, the Schrödinger equation is 
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The acceptable solution in the region r < R is
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The acceptable solution in the region r < R is

rkAru 1sin)(  with 
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For r > R, the wave function is 
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For further discussions it is convenient to rewrite Equation (33) as 
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The boundary condition on u and du/dr at r = R give
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Dividing then we have a transcendental equation to solve:
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Given E, V0, and R, we can in principle solve for δ.
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δ is called the 

“phase shift”



The effect of a scattering 

potential is to shift the phase 

of the scattered wave at points 

beyond the scattering regions, 

where the wave function is 

that of a free particle.

(attractive potential)

(repulsive potential)



A more general scattering theory with zero angular momentum (l = 0).

Incident particles are described quantum mechanically the incident plane wave. 

Mathematically the incident plane wave can be described with spherical waves eikr/r

and e-ikr/r. By multiplying with the time-dependent factor e-iωt it is easily recognized 

that eikr gives an outgoing wave whereas e-ikr gives an incoming wave.

For l = 0 we can take,
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The minus sign between the two terms keeps the incident wave function 

finite for r → 0, and using the coefficient A for both terms sets the 

amplitudes of the incoming and outgoing waves to be equal. 

(37)

We further assume that the scattering does not create or destroy particles, and 

thus the amplitudes of the eikr and e-ikr terms should be the same.

All that can result from the scattering is a change in phase of the outgoing wave:
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If we want to find the amplitude of the scattered wave we need to subtract the incident 

amplitude from )(r

incidentscattered  

In terms of                , the current of scattered particles per unit area can thus be 

calculated by the following equation:
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The scattered current is uniformly distributed over a sphere of radius r. The probability dσ 

that an incident particle is scattered into dΩ is the ratio of the scattered current to the 

incident current:
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Taking the equation (34) we know that in the region r > R the wave function is of the form 

This form can be manipulated in the following way:
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By subtracting the incident part of the wave function from Eq. (43) 

we have the scattered wave.

(44)



Using Eq. (40) the current of scattered particles per unit area is:
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In general, dσ/ dΩ varies with direction over the surface of the 

sphere; in the special case of l = 0 scattering, dσ/ dΩ is 

constant and the total cross section σ is
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The l = 0 phase shift is directly related to the probability 

for scattering to occur. That is, we can evaluate δ0 from our 

simple square-well model, Eq. (36), and compare with the 

experimental cross section.



In order to understand the data taken from the 

low-energy neutron-proton scattering we may 

return to the analysis of Equation (36) by putting 

in proper values for all related quantities.
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Assume that the incident energy is small, say E ≦ 10 keV and take V0

= 35 MeV from our analysis of the deuteron bound state. 
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Using R ≈ 2 fm from the study of the 2H bound state gives 

α ≈ 0.2 fm-1. Thus k2
2 << α2 and k2R << 1, giving
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1. In this figure the experimental cross sections 

for scattering of neutrons by protons is indeed 

constant at low energy, and decreases with E 

at large energy as Equation (52) predicts.

2. However the low-energy cross section, 20.4 

barns, is not in agreement with our calculated 

value of 4-5 barns.

3. This has to do with the spin-dependent 

characteristics in the NN interaction which 

we will not go any further.



~ The End ~


