
FARADAY’S LAW AND DISPLACEMENT 

CURRENT

Two topics will be discussed :

(i) Faraday’s Law – about the existence of electromotive force (emf) in 

the magnetic field

(ii) Displacement current – that exists due to time varying field

That will cause the modification of Maxwell’s equations (in point form - static 

case) studied previously and hence becomes a  concept basic to the 

understanding of all fields in electrical engineering.



9.1 FARADAY’S LAW

Michael Faraday – proved that if the current can produce magnetic field, 

the reverse also will be true.

Proven only after 10 years in 1831.

The magnetic field can produce current in a loop, only if the magnetic flux 

linkage the surface of the loop is time varying. 
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• Current produced magnetic field and the 

magnetic flux is given by :

 ∫
s
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• No movement in galvanometer means that the flux is constant.

• Once the battery is put off – there is a movement in the 

galvanometer needle.

• The same thing will happen once the battery is put on - but this 

time the movement of the needle is in the opposite direction.

Conclusions : The current was induced in the loop

- when the flux varies

- once the battery is connected

- if the loop is moving or rotating

(1)



Induced current will induced electromotive voltage or induced emf Vemf

given by :
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where   N = number of turns

Equation (2) is called Faraday’s Law

Lenz’s Law summarizes the –ve sign is that  :  The induced voltage 

established opposes the the flux produced by the loop.
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In general, Faraday’s law manifests that the Vemf can be established in these 

3 conditions :

• Time varying field – stationary circuit (Transformer emf)

• Moving circuit – static field (Motional emf)

• Time varying field - Moving circuit (both transformer emf and 

motional emf exist)



TIME VARYING FIELD – STATIONARY CIRCUIT 

(TRANSFORMER EMF)
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Diagram shows a circle loop with the surface area 
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From electric field : 
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Using Stoke’s theorem :
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Hence Maxwell’s equation 

becomes :
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MOVING CIRCUIT – STATIC FIELD (MOTIONAL 

EMF)
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Diagram shows a bar moving with a 

velocity      in a static field       .Bu

Force :
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Fleming’s Right hand rule

Thumb – Motion 

1st finger – Field

Second finger - Current



9.1.3  TIME VARYING FIELD - MOVING CIRCUIT
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Both transformer emf and motional emf exist



A conducting bar moving on the rail is shown in the diagram. Find an 

induced voltage on the bar if :
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(ii) Motional case :

dRemember : the direction of        

is opposed the current induced in 

the loop.
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(iii) Both transformer and motional case :
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1.   Displacement Electric Current

The displacement current is neither the conduction current nor the 

convection current, which are formed by the motion of electric charges.

It is a concept given by J. C. Maxwell.
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which are called the continuity equations for electric current.



For time-varying electromagnetic fields, since the charges are 

changing with time, the electric current continuity principle cannot be 

derived from static considerations. Nevertheless, an electric current is 

always continuous.  Hence an extension of earliest concepts for steady 

current need to be developed.

Gauss’ law for electrostatic fields,                     , is still valid for time-

varying electric fields, we obtain
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The current in a vacuum capacitor is 

neither the conduction current nor the 

convection current, but it is actually the 

displacement electric current.
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British scientist, James Clerk Maxwell named the density of the

displacement current, denoted as Jd , so that
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The introduction of the displacement current makes the time-

varying total current continuous, and the above equations are called

the principle of total current continuity.

The density of the displacement current is the time rate of change

of the electric flux density, hence
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In time-varying electric fields, the displacement current is larger if

the electric field is changing more rapidly.

In imperfect dielectrics, , while in a good conductor, .
cd JJ  cd JJ 



Maxwell considered that the displacement current must also produce 

magnetic fields, and it should be included in the Ampere circuital law, so 

that
SJJlH d)(d

  
d

  
  Sl

S
D

JlH d)(d
    





  Sl t t




D
JHi.e.

Which are Ampere’s circuital law with the displacement current. It 

shows that a time-varying magnetic field is produced by the conduction

current, the convection current, and the displacement current.

The displacement current, which results from time-varying electric

field, produces a time-varying magnetic field.

Maxwell deduced the coexistence of a time-varying electric field and 

a time-varying magnetic field, and they result in an electromagnetic

wave in space. This prediction was demonstrated in 1888 by Hertz. 

The law of electromagnetic induction shows that a time-varying 

magnetic field can produce a time-varying electric field.



2.   Maxwell’s Equations

For the time-varying electromagnetic field, Maxwell summarized 

the following four equations:
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The time-varying electric field is both divergent and curly, and the 

time-varying magnetic field is solenoidal and curly. Nevertheless, the 

time-varying electric field and the time-varying magnetic field cannot

be separated, and the time-varying electromagnetic field is divergent

and curly. 

In a source-free region, the time-varying electromagnetic field is 

solenoidal.

The electric field lines and the magnetic field lines are linked with 

each other, forming closed loops, and resulting in an electromagnetic 

wave in space.

The time-varying electric field and the time-varying magnetic field 

are perpendicular to each other.
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SELF INDUCTANCE AND MUTUAL INDUCTANCE
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From circuit theory the induced potential across a wire wound coil 

such as solenoid or a toroid :

Simple electric circuit that shows the effect of energy stored in a 

magnetic field of an inductor :

dt

dI
LVL 

where L is the inductance of the coil, I is the time varying current

flowing through the coil – inductor.
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In a capacitor, the energy is stored in the electric field :

In an inductor, the energy is stored in 

the electric field, as suggested in the 

diagram :
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Define the inductance of an inductor :

where        (lambda) is the total flux linkage of the inductor
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Two circuits coupled by a common 

magnetic flux that leads to mutual 

inductance.
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N2 turns

I2

1

12
12

I
M




Mutual inductance :

12 is the linkage of circuit 2 

produced by I1 in circuit 1

For linear magnetic medium   

M12 = M21



Obtain the self inductance of the long solenoid shown in the diagram.

Solution:

m
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Assume all the flux          links all N turns and 

that        does not vary over the cross section 

area of the solenoid.
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Obtain the self inductance of the toroid shown in the diagram.
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Obtain the expression for self inductance per meter of the coaxial cable when 

the current flow is restricted to the surface of the inner conductor and the 

inner surface of the outer conductor as shown in the diagram.
Solution:
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Find the expression for the mutual inductance between circuit 1 and 

circuit 2 as shown in the diagram.

Let us assume the mean path :

2b  >>  (c-a)

Solution:

Two circuits coupled by a common 

magnetic flux that leads to mutual 

inductance.
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MAGNETIC ENERGY DENSITY
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Consider a toroidal ring : The energy in the magnetic field :

Multiplying the numerator and denominator by 2b :
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Hence the inductance :



Derive the expression for stored magnetic energy density in a coaxial cable

with the length l and the radius of the inner conductor a and the inner

radius of the outer conductor is b. The permeability of the dielectric is  .
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Poynting Theorem

The Poynting theorem is one of the most important results in EM 

theory. It tells us the power flowing in an electromagnetic field.

John Henry Poynting (1852-1914)

John Henry Poynting was an English physicist. He was a professor of 

physics at Mason Science College (now the University of Birmingham) 

from 1880 until his death.

He was the developer and eponym of the Poynting vector, which 

describes the direction and magnitude of electromagnetic energy flow 

and is used in the Poynting theorem, a statement about energy 

conservation for electric and magnetic fields. This work was first 

published in 1884. He performed a measurement of Newton's 

gravitational constant by innovative means during 1893. 

http://upload.wikimedia.org/wikipedia/commons/5/5f/John_Henry_Poynting.jpg


Poynting Theorem
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Poynting Theorem (cont.)
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Poynting Theorem (cont.)
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Poynting Theorem (cont.)
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Poynting Theorem (cont.)
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Poynting Theorem (cont.)

Final differential form of the Poynting theorem:
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Poynting Theorem (cont.)

Volume (integral) form
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Integrate both sides over a volume and then apply the divergence theorem:
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    

        
    

   

 
2 2 21 1

ˆ
2 2

S V V V

E H ndS E dV H dV E dV
t t

  
    

        
    

   



Poynting Theorem (cont.)

Final volume form of Poynting theorem:

 
2 2 21 1

ˆ
2 2

S V V V

E H ndS E dV H dV E dV
t t

  
    

        
    

   

For a stationary surface:

 
2 2 21 1

ˆ
2 2

S V V V

E H ndS E dV H dV E dV
t t

  
    

        
    

   



Poynting Theorem (cont.)

Physical interpretation:

 
2 2 21 1

ˆ
2 2

S V V V

E H ndS E dV H dV E dV
t t

  
    

        
    

   

Power dissipation as heat (Joule's law)

Rate of change of stored magnetic energy

Rate of change of stored electric energy

Right-hand side = power flowing into the volume of space.

(Assume that S is stationary.)



S

Power 

in

Dissipated power

Rate of increase, electric stored energy

Rate of increase, magnetic stored energy

V



Poynting Theorem (cont.)

  ˆ
S

E H ndS    power flowing into the region

  ˆ
S

E H ndS   power flowing  of the regionout

Or, we can say that

Define the Poynting vector: S E H 

Hence



Poynting Theorem (cont.)

ˆ
S

S ndS  power flowing out of the region

Analogy:

ˆ
S

J ndS  current flowing out of the region

J = current density vector

S = power flow vector



Poynting Theorem (cont.)

S E H 

E

H

S

direction of power flow

The units of S are [W/m2]. 



Power Flow

The power P flowing through the surface S (from left to right) is:

surface S

n̂

ˆ
S

P S ndS 

S E H 



Time-Average Poynting Vector

     , , , , , , , , ,S x y z t E x y z t H x y z t 

       *1
Re E H

2
S t E t H t   

Assume sinusoidal (time-harmonic) fields)

    , , , Re E , , j tE x y z t x y z e 

    , , , Re H , , j tH x y z t x y z e 

From our previous discussion (notes 2) about time averages, we know that



Complex Poynting Vector

Define the complex Poynting vector:

We then have that

 *1
S E H

2
 

    , , , = Re S , ,S x y z t x y z



Note on Circuit Theory

Although the Poynting vector can always be used to calculate power flow, at 

low frequency, circuit theory can be used, and this is usually easier.

Example:

  ˆ
f

P

P E H z dS  

V0 R

P

Pf

I

z

fP V I

V




or, in 

frequency 

domain

 *1
ˆRe E H

2
f

P

P z dS  

 *1
Re V I

2
fP 


