
Magnetostatics
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Maxwell’s Equations

Gauss’ Law

Ampere’s Law

Gauss’ Law of magnetism

(No magnetic charges)

??
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Electrostatics

Problems Involving Symmetries

Gauss’s Law

Magnetostatics

Ampere’s Law

Total current  flowing 

through surface S
Total charge enclosed 

By Gaussian surface S
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Maxwell’s Equation:

Stokes’s

theorem

Current I is equal to 

the surface integral 

of J•ds

Integrate both sides over an open surface S
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Ampere’s law states that the line integral of H

(Magnetic Field Intensity) about any closed contour C is

exactly equal to the net current enclosed by that path.

Net Current

Enclosed 

by closed path 

C

Mathematically:

OR

Definition
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The sign convention for the direction of C is taken so that I and
H satisfy Right-Hand Rule.

Analyze Ampere’s Law:

C: Closed Contour 

(or Amperian Contour)

bounding the surface S

I: Total current flowing  

through surface S

Thumb direction of current, I
Four fingers direction of the contour C
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Infinitely 

long wire

Closed path, C

Ampere’s law can be easily applied to determine H

in a magnetic circuit, when the current distribution is

symmetrical. The proof is given as shown:

Recall:


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Assume that a closed path is drawn enclosing an infinite long

conductor with current I. The magnetic field H is :

In general, OR 

The integration along the closed contour C leads to:

[Cylindrical coordinate system]
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Contour C does not 

enclose the current I
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Net current enclosed by the Amperian contour

= (I) + (-I) = 0



Net current enclosed by the Amperian contour

= (I) + (-I) +(2I) = 2I


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Application of Ampere’s Law

1) Define Closed Contour C (Amperian Contour) 

[use right hand rule]

2) Define net current I: current through the surface
enclosed by Amperian Contour C.

3) Establish dl (magnitude and direction)

4) Establish H direction (Magnitude is H)

[use right hand rule]

5) Apply Ampere’s Law
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A long (practically infinite) straight wire of 
radius Ro carries a steady current I which is 
uniform over the cross-section of the wire. 
Find the magnetic flux density B at a radial 
distance r from the long axis of the wire for: 

(a) r  Ro, i.e. inside the wire, and 

(b) r  Ro, i.e. outside the wire

Application 1: Magnetic Field of Long Wire

r  Ro

r  Ro
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
^

B =
r (L2 + r2)

1/2

1mo IL

2

For an infinitely long wire such that L >> r


^

B =
mo I

2r

ẑ

P
r̂0

L

- L

r = r r
^

I
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 The wire is a long cylinder, therefore
use cylindrical coordinates with the
wire’s axis points along

 I is chosen to be along the axis
direction.

 From symmetry, the magnetic flux
lines form concentric circles around the
axis of wire.

Ẑ

Ẑ

Application 1: Solution
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Part a) r  Ro, i.e. inside the wire:

The cross sectional area for radius r  Ro is:

The current density through the cross-section 

of the wire with radius Ro is:

Current through the cross section is 

r

Ro

A =  r2
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Applying Ampere’s law:



z

R0

r

dl

Part a) r  Ro, i.e. inside the wire:

C

B

B

OR




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Where B is the magnetic flux density inside the wire. It points in
the  direction, i.e. tangential to the circle with radius r. Hence:

Part a) r  R0, i.e. inside the wire:

r z

R0

B

B
r










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Part b) r  R0, outside the wire




B is the magnetic flux density outside the wire. It is pointed to the  direction

The current enclosed by the contour is I.
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Summary: Plot of B vs. r

Part a) r  R0, i.e. inside the wire:

Part b) r  R0, outside the wire:

B

r
0 Ro
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Determine the magnetic flux inside an infinitely long solenoid

with air core. The solenoid has N number of closely wound turns

per unit length and carries a current I. 

I 

I 

L 

C 

B 

Application 2: Magnetic Field of Long Solenoid
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 The magnetic field outside the solenoid is zero except in the
vicinity of the ends which are at an infinite distance away.

 The magnetic field inside the solenoid is parallel to its long
axis.

 In order to find the magnitude of the magnetic flux density,
a closed contour C shown in the diagram is considered.

 The number of turns that the contour encloses is NL. The
current enclosed by the contour is NLI. Since the magnetic
flux density outside the solenoid is zero, therefore:

Application 2: Solution
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L

Ampere’s Law:

B is uniform within the solenoid and zero outside it, using the 

rectangular Amperian loop abcda:

= BL





N: number of turn 

per unit length

Ienc

= 0 = 0 = 0

Outside the solenoid,

 B = 0
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Application 3: Magnetic Field of a Toroidal Coil (or Toroid)

A toroid which direction dimensions as shown in the figure has N

turns and carries current I. Determine magnetic flux intensity H

inside and outside the toroid.

What is toroid?

Doughnut-shaped structure with 

closed spaced turns of wire 

wrapped around it

Only few turns are shown
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A toroid which direction dimensions as shown in the figure has N

turns and carries current I. Determine magnetic flux intensity H

inside and outside the toroid.

b

a
b
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Circular Amperian Contour 1 (r < a):

Inside the Toroid

Amperian 

Contour 1

r < a

Current contained by contour 1
is zero, thus H = 0

Ampere’s Law: a
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Circular Amperian Contour 3 (r  b):

Outside the Toroid

Amperian 

Contour 3

r > b

Since the total current contained
by contour 3

= I + (-I)

= 0

Ampere’s Law: 

a

b

Thus, H = 0
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Amperian 

Contour 2

r 

Inside the Toroid (a < r < b)

Recall:

The right –hand rule tells us that B

must be in the negative -direction. 

The magnetic field at the 

center of the loop points 

along the  axis of the loop

Direction of   ?   



29

Amperian 

Contour 2
Ampere’s Law:

Total current enclosed by the contour 2 is

Ienc = NI

N is the total number of turns in the winding

Ienc is positive if it crosses the surface of the 

contour in the direction of the four fingers of 

the right hand when thumb is pointing along 

the direction of the contour. 
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r
d

Amperian 

Contour 2
Ampere’s Law:

Ienc = NI






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Ampere’s Law: OR

Long Wire: Inside the wire:

Outside the wire:

Long Solenoid: 

Toroid:  

N: number of turn per unit length

N: number of turns



Application 4: Infinite extent with a surface current density

lJIldHldHldHldHldH yen
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Graphical display for finding      and using Ampere’s circuital law:H



From the construction, we can see that     above and below the surface 

current will be in the     and       directions, respectively. 

H
x̂ x̂

lJdxxxHdxxxH yxx   ˆ)ˆ(ˆˆ
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0      and 

where

since     is perpendicular to dlH

lJlHlH yxx  21

Hence:

Similarly if we takes on the path 3-3'-2'-2-3, the 

equation becomes:

lJlHlH yxx  23

xxx HHH  31

Therefore:



HAnd we deduce that         above and below the surface current are 

equal, its becomes:

lJlHlH yxx 

0z      ;   
2

1

0z      ;     
2

1





yx

yx

JH

JH

  )ˆ( 
2

1

    ˆ 
2

1

xJH

xJH

y

y





In vector form:

naJH ˆ
2

1


y

x

naz ˆ

It can be shown for two parallel plate with separation h, carrying equal current 

density flowing in opposite direction the      field is given by:H

) 0 z andh  z (     ;    0   

)h z0 (  ;   ˆ



 naJH



MAGNETIC FLUX DENSITY

Magnetic field : Teslas    HB om )/( 2mWb

 H/mo  104 7- mwhere                                            

permeability of free space 

∫
s

m dsB Magnetic flux :        

that passes 

through the surface S.

ds 

n
adsds ˆ  

 

s 

 

B  

mdΨ B= ds cos 

dsB =

 
s

m sdBΨ
Hence:

)(   0 WbsdBΨ
s

m  

In magnetics, magnet poles have not been 

isolated:

 

0

0



 

B

dvBsdB
vs



rH 310̂For (Am-1), find the m that passes through a plane 

surface by, ( = /2), (2  r  4), and (0  z  2).

   

 

   Wb10 x 8.150

121010

ˆ10ˆ

4-

3

2

0

4

2

3

2

0

4

2

3







 

 

oo

o

s

m

rdrdz

drdzrdsBΨ

mm

m

Solution:



MAXWELL’S EQUATIONS

POINT 
FORM

INTEGRAL FORM

vD  encQ
v

dvv
s

sdD
v

dvD    

0 x  E   0 x   
l

ldE
s

sdE

JH  x   encI
s

sdJ
l

ldH
s

sdH     x 

0 B 0  
s

sdB
v

dvB

ED 

HB m

Electrostatic fields :

Magnetostatic fields:



VECTOR MAGNETIC POTENTIAL

 0
s

sdB magnet poles have not 

been isolated

To define vector magnetic potential, we start with:

0∇∫  
v

dvBdsB

Using divergence theorem:

  0∇∇  A

From vector identity:

0∇ B

Therefore from Maxwell and identity 

vector, we can defined if      is a 

vector magnetic potential, hence: 

<=>

AB ∇

A

where      is any vector.A

=>



FORCE ON A MOVING POINT CHARGE

EQFe 
Force in electric field:

BUQFm 
Force in magnetic field:

Total force:

me FFF   BUEQF or

Also known as Lorentz force equation. 



EQ

BUQ 

Charge

Condition Field

Stationary -

Moving

E

EQ

B Field

 BUEQ 

Combination 

E Band

EQ

Force on charge in the influence of fields:



FORCE ON A FILAMENTARY CURRENT

The force on a differential current element ,         due to the uniform magnetic field,      

:

__

dlI B

BlIdFd 

  
____

  dlBIBdlIF

  0ldBIF

It is shown that the net force for any close current loop in the uniform 

magnetic field is zero.



A semi-circle conductor carrying current I, is located in plane xy as shown in Fig.. 

The conductor is under the influence of uniform magnetic field,                . Find:

(a) Force on a straight part of the conductor.

(b) Force on a curve part of the conductor.

0
ˆByB 



r

I

B

x

y
Solution:

(a) The straight part length = 2r. 

Current flows in the x direction.

(N) 2ˆˆ)2(ˆ
001 IrBzByIrxF 

BdlIF  
__



(N) 2ˆsinˆ    0

0

0

0

2

IrBzdrBIz

BldIF






















(b) For curve part,                will be in the (–ve) z 

direction and the magnitude is proportional 

to sin 

Bdl
__

12 FF Hence, it is observed that                      and it is shown that 

the net force on a close loop is zero.


r

I

B

x

y



FORCE BETWEEN TWO FILAMENTARY 

CURRENT

P1(x1,y1,z1)

P2(x2,y2,z2)

Loop l1

Loop l2

__

11 dlI

2

__

2 dlI

I1

I2

12
ˆ

Ra
R12

x

y

z



The magnetic field at point P2 due to the 

filamentary current I1dl1 :

P1(x1,y1,z1)

P2(x2,y2,z2)

Loop l1

Loop l2

__

11 dlI

2

__

2 dlI

I1

I2

12
ˆ

Ra
R12

x

y

z

2

12

11

2
4

ˆ x 
12

R

aldI
Hd

R


 (A/m)

BldIFd x (N)

 
2

12

11

222
4

ˆ x
 x 12

R

aldI
ldIFdd

Ro



m


  2222

12

11

222  x
4

ˆ x
 x 

1

12 BldI
R

aldI
ldIFd

l

Ro
 



m

We have :

where          is the force due to I2dl2 and due to the magnetic field of loop l12Fd



Integrate:
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 
 
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     2

s

22 dsBJF s  

dvBJF
v

222  

For surface current :

For volume current :



A square conductor current loop is located in z = 0 plane with the edge given by

coordinate (1,0,0), (1,2,0), (3,0,0) and (3,2,0) carrying a current of 2 mA in anti

clockwise direction. A filamentary current carrying conductor of infinite length along

the y axis carrying a current of 15 A in the –y direction. Find the force on the square

loop.

Solution:

(1,0,0)

(1,2,0)

(3,0,0)

(3,2,0)

x

y

z

2 mA
15 A

T  ˆ
103

104 ∴

A/m ˆ
2

15
ˆ

2
6

7-

0 z
x

HHB

z
x

z
x

I
H

-




m



Field created in the square loop due to 

filamentary current :

zxy

aa Rl

ˆˆˆ

ˆˆˆ







Hence:
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MAGNETIC MATERIAL

The prominent characteristic of magnetic material is

magnetic polarization – the alignment of its magnetic

dipoles when a magnetic field is applied.

Through the alignment, the magnetic fields of the

dipoles will combine with the applied magnetic field.

The resultant magnetic field will be increased.

MAGNETIC POLARIZATION (MAGNETIZATION)

Magnetic dipoles were the results of three sources of

magnetic moments that produced magnetic dipole

moments : (i) the orbiting electron about the nucleus

(ii) the electron spin and (iii) the nucleus spin.

The effect of magnetic dipole moment will produce

bound current or magnetization current.



Magnetic dipole moment in microscopic 

view is given by :

______

   dsIdm  Am2

___

dmwhere    is magnetic dipole moment in discrete 

and I is the bound current.

In macroscopic view, magnetic dipole moment 

per unit volume can be written as:

where    is a magnetization and n is the volume 

dipole density when v -> 0.

 M






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 
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
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M
1

___

0v

1
lim  A/m



Am-1
______

    dsnIdmnM 

If the dipole moments become totally 

aligned :

___

idm

ds

___

idm

0

0
___





M

dmi

Macroscopic v 

Microscopic 

base

___

idm

0aB
0aB

0M

0

0
___





M

dmi

Magnetic dipole moments in a magnetic material

tend to align 

themselves

sdm'
___



msm JJ  and 

BOUND MAGNETIZATION CURRENT DENSITIES

x

y

z

I

aB

M

___

dm

smJ

___

dm

M

M

aB

aB

M

Alignment of     within a magnetic material under uniform 

conditions to form a non zero    on the slab surfaces, and 

a       within the material.

sdm'
___

aB

smJ
0mJ



TO FIND msm JJ  and 

y



Bound magnetization current :

vInddIm


________

)()()( ldsdnIldsdnIdIm


Am-1
______

    dsnIdmnM 

We have:

ldMdIm


Hence:

   
s l s

mm dsMldMdsJ = I

Using Stoke’s Theorem:

MJ m  (Am-2)
is the bound magnetization current 

density within the magnetic material.



EFFECT OF MAGNETIZATION ON MAGNETIC FIELDS

HBJ
B

JH

o

o

m
m





    ;

charge)  (free

Due to magnetization in a material, we have seen the formation of bound 

magnetization and surface bound magnetization currents density.

due to free charges and bound 

magnetization currents

Maxwell’s equation:
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
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)( MHB o  m

HM m litysusceptibi magnetic m

)1( mo HB m 

)1( mr m 

HB m   

typermeabiliro  mmm

Hence:

Magnetization in isotropic 

material:

Hence:


