Magnetostatics




Maxwell’s Equations

Electrostatics

V.D=p,, (2.2a) Gauss’Law

VXE=0. (2.2b) 22

Magnetostatics

B Gauss’ Law of magnetism
V.B=0, (2. 3a) (No magnetic charges)

VxH=J. (2. 3b) Ampere’s Law




Problems Involving Symmetries

Electrostatics Magnetostatics
Gauss’s Law Ampere’s Law
VeD=p. VxH =
Deds =0 § Hedl=
S 1
Total charge enclosed Total current flowing
By Gaussian surface S through surface S
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Maxwell’s Equation: VxH=J

Integrate both sides over an open surface S

J‘(Vxﬁ)Od§:Jj0d§
s s

Current | is equal to
the surface integral
of Jeds

Stokes’s : :
theorem ,
v

Heodl =]

&



Definition

Ampere’s law states that the line integral of H
(Magnetic Field Intensity) about any closed contour C is
exactly equal to the net current enclosed by that path.

Mathematically:

— —
pTedi =1
C Net Current
— — Enclosed
b= pu,t by closed path
_..» C



Analyze Ampere’s Law:

pTedi =1
&

_ \

C: Closed Contour |: Total current flowing

(or Amperian Contour) | |through surface S
bounding the surface S

The sign convention for the direction of C is taken so that I and
H satisfy Right-Hand Rule.

Thumb = direction of current, |
Four fingers = direction of the contour C



Ampere’s law can be easily applied to determine H
In a magnetic circuit, when the current distribution is
symmetrical. The proof is given as shown:

H=Hg¢
Recall: B gz il
By i
Closed path, C > ~ ]
> H=¢p—




Assume that a closed path Is drawn enclosing an infinite long
conductor with current I. The magnetic field H is :

-~ 1
H=¢p—
/ 27tr
The integration along the closed contour C leads to:

dl = rdr+ prd o + Zdz  [Cylindrical coordinate system]

27T 2x
ii;]:IOdf = J‘glg ! o (Fdy+grdg+ 5dz) = JL(ZQ =
c 0 27 27
0

In general, jch"'” :Z]z OR £B-(-// :#OZL



(c)

Contour C does not
enclose the current |

§iedi=0
&




"

H — e
(=]
| ;H o/
> §.
H < Net current enclosed by the Amperian contour
=()+(-1)=0
— § Hedi=0
c

Net current enclosed by the Amperian contour

= (1) + (1) +(21) = 2

— §>H-d%:21
;
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1)
2)

3)

S)

Application of Ampere’s Law

Define Closed Contour C (Amperian Contour)
use right hand rule]

Define net current | current through the surface
enclosed by Amperian Contour C.

Establish dl (magnitude and direction)
Establish H direction (Magnitude is H)
[use right hand rule]

Apply Ampere’s Law
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Application 1: Magnetic Field of Long Wire

uniform over the cross-section of the wire.
Find the magnetic flux density B at a radial
distance r from the long axis of the wire for:

(@) r <R, I.e. Inside the wire, and
(b) r >R, 1.e. outside the wire

A long (practically infinite) straight wire of /—\K_\
radius R, carries a steady current I which Is —

12



" N
B = g Ho Il 1
2T r (L2 + r2)”2

, For an infinitely long wire such that L >>r

L E': g Ho |
27r

-0 o-->1T




Application 1: Solution

m The wire is a long cylinder, therefore
use cylindrical coordinates with the
wire’s axis points along 7

m | is chosen to be along the z axis
direction.

m  From symmetry, the magnetic flux
lines form concentric circles around the
axis of wire.

14



Part a) r <R, i.e. inside the wire:

The current density through the cross-section
of the wire with radius R, Iis: I

J =—
R

The cross sectional area for radius r <R, is: (A = 7 r?

. Current through the cross section is

15



"

Parta) r < Rg, 1.e. Inside the wire:

Applying Ampere’s law: § Hedt =]
' enc
CY

OR §l§0 dl=ul
(6

r e
]enc _21 — B§d€ — i = ]
RO c lLl (R- J

2
BQRmr)y=ul—
(27) = p, R

L

B = #oﬁr_-
2R
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Parta) r < RQ, 1.e. Inside the wire:

Where B is the magnetic flux density inside the wire. It points in
the ¢ direction, I.e. tangential to the circle with radius r. Hence:

2
= n l]l‘
B:ci’l"

- 2
27 R
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Part b) r > Rg, outside the wire

The current enclosed by the contour is I.

§B . d_(: = #0163110
"

= BQmr)=pul1

—_—

B=

§a’/ 27z7ﬂ

B is the magnetic flux density outside the wire. It is pointed to the ﬁdirection

— ,U[“
B=st
27zr¢
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Summary: Plotof B vs. r
= plr o,

Part a) r <R,, 1.e. Inside the wire: B, —¢ (r<R)
2R
Part b) r > R,, outside the wire: B = ol ¢ (r>=R)
o 2727”' (@]
B
A
178 N
27R, : 1
Bz' ocr < E > BO ” I_
0 FIQO » I
B, B 19
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Application 2: Magnetic Field of Long Solenoid

Determine the magnetic flux inside an infinitely long solenoid
with air core. The solenoid has N number of closely wound turns
per unit length and carries a current |I. |




N
AL [ Fi
L% Y FFi
111 iy
) \‘ f’
| 1
) ’!’; \\\
=)
/ S
(a) Loosely wound (b) Tightly wound
solenoid solenoid
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Application 2: Solution

m The magnetic field outside the solenoid is zero except in the
vicinity of the ends which are at an infinite distance away.

m The magnetic field inside the solenoid is parallel to its long
axis.

m In order to find the magnitude of the magnetic flux density,
a closed contour C shown in the diagram is considered.

m The number of turns that the contour encloses is NL. The
current enclosed by the contour is NLI. Since the magnetic
flux density outside the solenoid is zero, therefore:

22



" S

o

Outside the solenoid, | _ lf L f’l
= B=0 —IK[I'I'I:'I'IOIOIolol Fodl
BF——a = b = Bdl cos90°
i
- C — ()

— NIXIXIXIXIXIXIX XX IXIX XXX IX XXX IXIX X XTX]X]X] —

Ampere’s Law: E‘SE odl = ul,
C

B is uniform within the solenoid and zero outside it, using the
rectangular Amperian Ioop abcda:

§B o dl = J.B odl + /H ;/Zm/

Bedl =BL+0+0+0 =BL I
i: enc

2> BL=uNLI N: number of turn

per unit length
B =y NI
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Application 3: Magnetic Field of a Toroidal Coil (or Toroid)

A toroid which direction dimensions as shown in the figure has N
turns and carries current |I. Determine magnetic flux intensity H
Inside and outside the toroid.

What is toroid?

Doughnut-shaped structure with
closed spaced turns of wire
wrapped around it




A toroid which direction dimensions as shown in the figure has N
turns and carries current |I. Determine magnetic flux intensity H
Inside and outside the toroid.
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Amperian
Inside the Toroid Contour 1

Circular Amperian Contour 1 (r < a):

—

Ampere’s Law: § odl =1
&

Current contained by contour 1
IS zero, thus H =0
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Amperian
Qutside the Toroid e ~--Contour 3

Circular Amperian Contour 3 (r > b):
Ampere’s Law: §H odl =1
C !

Since the total current contained
by contour 3 »

=1+ (-1)
=0
Thus, H=0
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Inside the Toroid (a < r < b) Amperian
Contour 2

Direction of _”)
Recall: b

The magnetic field at the
center of the loop points
along the axis of the loop

The right —hand rule tells us that B
must be in the negative ¢-direction.
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Ampere’s Law: §B ol = ,uol Amperian
eric
C Contour 2

Total current enclosed by the contour 2 is
Ienc = NI

N is the total number of turns in the winding

I IS positive if it crosses the surface of the

contour in the direction of the four fingers of
the right hand when thumb is pointing along
the direction of the contour.
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Ampere’s Law: §B ol = yzi i
C

lenc = NI B=B¢2

= §(Bd)e(drdg)= NI

B § dg = 11 NI
ez

~N—-

BrQ2z)= u,NI

— B u NI
2mr
B — q; u NI
2ar

Amperian
Contour 2
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Ampere’s Law: ﬁ e d_é — Lone OR §B e dz = luolenc
c e
_ : . |y uIr ;
Long Wire:  Inside the wire: |B = ¢ (r<R)
2R
: N =S
Outside the wire: |B =22~y (2R
2 °
Long Solenoid: B = 1 NI N: number of turn per unit length
- =~ ~n NI
Toroid: B=¢ ax N: number of turns

277
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Application 4: Infinite extent with a surface current density

Graphical display for finding H and using Ampere’s circuital law:

3

A
I\
|

Y

N

e

L|
=
+

= e I
I

2 1
di +[H-dl +[H-dl =1, =]
2' 2




" A
From the construction, we can see that H above and below the surface
current will be in the X and — X directions, respectively.

' 2
| HaR-Rdx+[ H,,(-8) - Rdx = J |
)

1

=

where

2
jand j — (| since His perpendicular to dl
1

Therefore: D

H -H/,I=J]

Similarly if we takes on the path 3-3'-2'-2-3, the
equation becomes:

Hol—H I =J

y

Hence: H —-H.=H Amperian path 1-1’-2’-2-1
x1 X3 X




And we deduce that |H | above and below the surface current are
equal, its becomes:

Hl+H1=J|

_ 1 R
HX:%‘Jy . z>0 H:+§Jyx
1 — 1 n
HX:_EJV , 2<0 H:+§Jy(—x)
In vector form: z = a,

ﬁzinén N
2 —é)y

It can be shown for two parallel plate with separation h, carrying equal current
density flowing in opposite direction the H field is given by:

H=Jxa, ;(0<z<h)
=0 ; (z>handz<0)




" JE
MAGNETIC FLUX DENSITY

Magnetic field : | B = ,Uoﬁ Teslas (\Nb/m2)

where ;= 47x107 H/m

permeability of free space

Magnetic flux : (W, = j §°E In magnetics, magnet poles have not been
that passes = Isolated:
through the surface S. SUm _ § Beds=0 (\Nb)
S
d¥_ = |ds|B||cos a - —
— ® (S = e —
ST ifB ds i(v B)v =0
HenceS:Um:J.g.d§ VeB =0
s




For H = ¢3103r (Am1), find the y, that passes through a plane
surface by, (¢ = #42), (2 <r £4),and (0 £z <2).

Solution:;

(,uo¢?103 r)o $(drdz)

S

N G

= 11,10° j j rdrdz = £4,10%(12)
02

=150.8x10™" Wb




MAXWELL’S EQUATIONS

POINT INTEGRAL FORM
FORM
VeD=p, | JVeDdv={Deds=]p,dv=0Qgnc
\' S V
VXE =0 I(VXE)-d§=§E-df=O
S I
VxH =1] i(Vxﬁ)od§:i§ﬁodf=£j.d§:|enc
n _ [VeBdv=§Beds=0
VeB =0 v .

Electrostatic fields : 5 — 5E

Magnetostatic fields: B = yﬁ




VECTOR MAGNETIC POTENTIAL

To define vector magnetic potential, we start with:

§§0d§=0

S

Using divergence theorem:

=> magnet poles have not
been isolated

§§0E:IV0§dV=O

<
°
el
|l
o

<=>

From vector identity:

VeVxA)=0

where A is any vector.

Therefore from Maxwell and identity
vector, we can defined if A is a
vector magnetic potential, hence:

B=VxA




"

FORCE ON A MOVING POINT CHARGE

Force in electric field:

Force in magnetic field: — — —

Total force: _ — .
F=F+F, o F=Q(E+UxB)

e

Also known as Lorentz force equation.



" N

Force on charge in the influence of fields:

Charge — ~i Combination
Condition E Field B Field Ead B
Stationary Q E - Q E

Moving QE QU xB Q(E +U xB




"
FORCE ON A FILAMENTARY CURRENT

The force on a differential current element , | dl due to the uniform magnetic field,B

dF = Idl xB
lf:§ 1dIxB =- §§ x I
F =—IBx{di =0

It is shown that the net force for any close current loop in the uniform
magnetic field is zero.



A semi-circle conductor carrying current |, is located in plane xy as shown in Fig..
The conductor is under the influence of uniform magnetic field, B = yBO. Find:
(a) Force on a straight part of the conductor.

(b) Force on a curve part of the conductor.

Solution;

(a) The straight part length = 2r. _ , _ _
Current flows in the x direction. § _— L

If:jlcﬂx§

F=%@INxy8,=22IrB,(N) |~ 1.

v




" J
(b) For curve part, dlx B will be in the (—ve) z

direction and the magnitude is proportional
to sin ¢

v

F, =1 J-dl_xg
$=0

= —21 [ rB,sin gdg =—221rB, (N)
$=0

Hence, it is observed that F2 — —|:1 and it is shown that

the net force on a close loop is zero.



"
FORCE BETWEEN TWO FILAMENTARY
CURRENT

Loop 1,




We have ; z

The magnetic field at point P, due to the
filamentary current |, dl; :

dl x 8y,

dH, =

A7R,,°

_ ) — lLlO Ildl—l X éR
X 12
47R,,°

(dF,) ] j:'uolldllx U, _ 1,dl, x B,

where dF, is the force due to |,dl, and due to the magnetic field of loop I,



"

Integrate:

1, l,

s = ﬂo|1|2§ (éR12X dl—l)_

IEZ =§|2d|2 X §|::uo|1d|—1Xé‘R12:|

4R’

For volume current :

If2 jjzxgzdv

x di
2 2
dr pln Rp™ |
For surface current :
F, = [ J,, xB,ds
S




A square conductor current loop is located in z = 0 plane with the edge given by
coordinate (1,0,0), (1,2,0), (3,0,0) and (3,2,0) carrying a current of 2 mA in anti
clockwise direction. A filamentary current carrying conductor of infinite length along
the y axis carrying a current of 15 A in the —y direction. Find the force on the square

loop. y
Solution:
Field created in the square loop due to (1,2,0) (3,2,0)
filamentary current : <
{1 15A
— | ., 15 , ¢=4a xa 1 2mA ¢t
H=—17%=—"2A/m R
27X 27 =-yxx=2] | @ : - X
_ _ . 3x10° . (1,0,0) (3,0,0)
.-.B=,u0H=47z><107H: T

X




F=§1dixB=—1{Bx

+ j —><dXX+ j —xdyy}

F = —6x109[ fy% Vo (= %)+In X 9+ y[ (= ﬁ)}

=—6x109[(|n3)9 23+ (In ;jy+2f<}

3

=—8X nN

(1,2,0) (3,2,0)
F=-2x103%x3x10" { xdxx+j ><d *15A'* 2 mA t
- — —xdyy
Z@
(1,0,0) (3,0,0)



" N
MAGNETIC MATERIAL

The prominent characteristic of magnetic material 1is
magnetic polarization — the alignment of 1ts magnetic
dipoles when a magnetic field is applied.

Through the alignment, the magnetic fields of the
dipoles will combine with the applied magnetic field.

The resultant magnetic field will be 1ncreased.

MAGNETIC POLARIZATION (MAGNETIZATION)

Magnetic dipoles were the results of three sources of
magnetic moments that produced magnetic dipole
moments : (1) the orbiting electron about the nucleus
(11) the electron spin and (111) the nucleus spin.

The effect of magnetic dipole moment will produce
bound current or magnetization current.



"
Magnetic dipole moment 1n microscopilc
view 1s given by

dm=1ds Am?

where dmis magnetic dipole moment 1n discrete
and I 1s the bound current.

In macroscoplc view, magnetic dipole moment
per unit volume can be written as:

NAvV

— .1
M = lim dm. | A
_AVZ 1 "

Av—0

where M is a magnetization and n 1is the volume
dipole density when Av -> 0.



" N
If the dipole moments become totally
aligned

M=ndm=nlds 2am

Magnetic dipole moments in a magnetic material

T B, =0
fm=o
Macroscopic Av dm,
Microscopic dm; #0 dm's tend to align
base M =0 themselves




"

BOUND MAGNETIZATION CURRENT DENSITIES

. J. and J

sm m
% y , dm B

Alignment of dm's within a magnetic material under uniform ga
conditions to form a non zero Jg, on the slab surfaces, and

a J. =0 within the material.



Slabk of magnetic
— — material

TO FIND Jg,and J

y thin
% slah
Loop [
the slap
Surfa
Lo Loop 1" on
k| the surface
- \ A
On the slakb j . E
surface 5
(a)

Graphical display for finding expressions for

Jow Am” and . Am?®: (a) slab of magnetic
material with closed loop [" within the material
and on the slab surface [(b) expanded view of

av' about the loop [, dv' =ds'-dl




"
Bound magnetization current :

dl . = IndV’
dl_ = I(nds"-dl’) = (nl ds’)- (dI’)

We have:

M =ndm=nlds Am

Hence:

I VERETL
dl, =M -dl
Using Stoke’s Theorem:

1= [Jn-ds—§M-dl' = [VxM -ds

El _ IS the bound magnetization current
— Am~? . . : .
J i VxM ) density within the magnetic material.




EFFECT OF MAGNETIZATION ON MAGNETIC FIELDS

Due to magnetization in a material, we have seen the formation of bound
magnetization and surface bound magnetization currents density.

Maxwell’s equation:

VxH=1J
inzj
Ko

(free charge)

#, H

o
I

Hy
VxM :jm
ngo:(j+VxM)

— VX E — (j + ] m) <«—l due to free charges and bound
magnetization currents

Define:




Hence:

Magnetization in isotropic
material:

M=y H

Hence:

B=xu HA+z,)

=0+ x0)

¥, =magnetic susceptibility

U=, = permeability



